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The Turing Award Lecture given in 1971 by John McCarthy was never 
published. The postscript that follows, written by the author in 1986, 
endeavors to reflect the flavor of the original, as well as to comment in the 
light of development over the past 15 years. 

Postscript 
My 1971 Turing Award Lecture was entitled "Generali ty in Artificial 

Intelligence." The topic tu rned  out to have been overambit ious in that 
I discovered that I was unable to put  my  thoughts on the subject in 
a satisfactory wri t ten form at that time. It would have been better  to 
have reviewed previous work  rather  than at tempt something new, but  
such wasn't  my custom at that time. 

I am grateful to the ACM for the opportuni ty  to try again. Unfor- 
tunately for our  science, al though perhaps for tunately for this project, 
the problem of generality in artificial intelligence (AI) is almost as 
unsolved as ever, al though we now have many  ideas not available in 
1971. This paper  relies heavily on such ideas, but  it is far f rom a full 
1986 survey of approaches for achieving generality. Ideas are discussed 
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at a length proportional to my familiarity with them rather than 
according to some objective criterion. 

It was obvious in 1971 and even in 1958 that AI programs suffered 
from a lack of generality. It is still obvious, and now there are many 
more details. The first gross symptom is that a small addition to the 
idea of a program often involves a complete rewrite beginning with the 
data structures. Some progress has been made in modularizing data 
structures, but small modifications of the search strategies are even less 
likely to be accomplished without rewriting. 

Another symptom is that no one knows how to make a general 
database of common sense knowledge that could be used by any 
program that needed the knowledge. Along with other information, such 
a database would contain what a robot would need to know about the 
effects of moving objects around, what a person can be expected to 
know about his family, and the facts about buying and selling. This 
doesn't depend on whether the knowledge is to be expressed in a logical 
language or in some other formalism. When we take the logic approach 
to AI, lack of generality shows up in that the axioms we devise to express 
common sense knowledge are too restricted in their applicability for 
a general common sense database. In my opinion, getting a language 
for expressing general common sense knowledge for inclusion in a 
general database is the key problem of generality in AI. 

Here are some ideas for achieving generality proposed both before 
and after 1971. I repeat my disclaimer of comprehensiveness. 

Representing Behavior by Program 
Friedberg [7, 8] discussed a completely general way of representing 

behavior and provided a way of learning to improve it. Namely, the 
behavior is represented by a computer program and learning is accom- 
plished by making random modifications to the program and testing 
the modified program. The Friedberg approach was successful in 
learning only how to move a single bit from one memory cell to another, 
and its scheme of rewarding instructions involved in successful runs 
by reducing their probability of modification was shown by Simon [24] 
to be inferior to testing each program thoroughly and completely scrap- 
ping any program that wasn't perfect. No one seems to have attempted 
to follow up the idea of learning by modifying whole programs. 

The defect of the Friedberg approach is that while representing 
behaviors by programs is entirely general, modifying behaviors by small 
modifications to the programs is very special. A small conceptual 
modification to a behavior is usually not represented by a small 
modification to the program, especially if machine language programs 
are used and any one small modification to the text of a program is 
considered as likely as any other. 

It might be worth trying something more analogous to genetic 
evolution; duplicates of subroutines would be made, some copies would 
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be modified and others left unchanged. The learning system would then 
experiment whether it was advantageous to change certain calls of the 
original subroutine to calls of the modified subroutine. Most likely even 
this wouldn't work unless the relevant small modifications of behavior 
were obtainable by calls to slightly modified subroutines. It would 
probably be necessary to provide for modifications to the number of 
arguments of subroutines. 

While Friedberg's problem was learning from experience, all 
schemes for representing knowledge by program suffer from similar 
difficulties when the object is to combine disparate knowledge or to 
make programs that modify knowledge. 
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The General Problem Solver (GPS) 
and Its Successor 

One kind of generality in AI comprises methods for finding solutions 
that are independent of the problem domain. Allen Newell, Herbert 
Simon, and their colleagues and students pioneered this approach and 
continue to pursue it. 

Newell et al. first proposed GPS in 1957 [18]. The initial idea was 
to represent problems of some general class as problems of transform- 
ing one expression into another by means of a set of allowed rules. It 
was even suggested in [20] that improving GPS could be thought of as 
a problem of this kind. In my opinion, GPS was unsuccessful as a 
general problem solver because problems don't take this form in general 
and because most of the knowledge needed for problem solving and 
achieving goals is not simply representable in the form of rules for 
transforming expressions. However, GPS was the first system to 
separate the problem-solving structure of goals and subgoals from the 
pa?ticular domain. 

If GPS had worked out to be really general, perhaps the Newell and 
Simon predictions about rapid success for AI would have been realized. 
Newell's current candidate [22] for general problem representation 
is SOAR, which, as I understand it, is concerned with transforming 
one state to another, where the states need not be represented by 
expressions. 

Production Systems 
The first production systems were done by Newell and Simon in 

the 1950s, and the idea was written up in [21]. A kind of generality 
is achieved by using the same goal-seeking mechanism for all kinds 
of problems, changing only the particular productions. The early 
production systems have grown into the current proliferation of expert 
system shells. 

Production systems represent knowledge in the form of facts and 
rules, and there is almost always a sharp syntactic distinction between 
the rules. The facts usually correspond to ground instances of logical 
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formulas, that is, they correspond to predicate symbols applied to 
constant expressions. Unlike logic-based systems, these facts contain 
no variables or quantifiers. New facts are produced by inference, 
observation, and user input. Variables are reserved for rules, which 
usually take a pa t t e rn -ac t ion  form. Rules are put in the system by the 
programmer or "knowledge engineer" and in most systems cannot arise 
via the action of the system. In exchange for accepting these limita- 
tions, the production system programmer gets a relatively fast program. 

Production system programs rarely use fundamenta l  knowledge of 
the domain. For example, MYCIN [2] has many rules about how to infer 
which bacterium is causing an illness based on symptoms and the result 
of laboratory tests. However,  its formalism has no way of expressing 
the fact that bacteria are organisms that grow within the body. In fact, 
MYCIN has no way of represent ing processes occurring in time, 
al though other  product ion systems can represent  processes at about 
the level of the situation calculus to be described in the next section. 

The result of a product ion system pat tern match is a substitution 
of constants for variables in the pat tern part of the rule. Consequently,  
product ion systems do not infer general propositions. For example, 
consider the definition that a container is sterile if it is sealed against 
entry by bacteria, and all the bacteria in it are dead. A production system 
{or a logic program) can only use this fact by substituting particular 
bacteria for the variables. Thus it cannot  reason that heating a sealed 
container will sterilize it given that a heated bacter ium dies, because 
it cannot reason about the unenumerated set of bacteria in the container. 
These matters  are discussed fur ther  in [14]. 

Representing Knowledge in Logic 
It seemed to me in 1958 that small modifications in behavior  are 

most often representable as small modifications in beliefs about  the 
world, and this requires a system that represents  beliefs explicitly. 

If one wants a machine to be able to discover an abstraction, it seems most 
likely that the machine must be able to represent this abstraction in some relatively 
simple way. [11, p. 78] 

The 1960 idea for increasing generali ty was to use logic to express 
facts in a way independent  of the way the facts might subsequent ly  
be used. It seemed then and still seems that humans  communica te  
mainly in declarative sentences rather than in programming languages 
for good objective reasons that will apply whe ther  the communica tor  
is a human,  a creature f rom Alpha Centauri,  or a computer  program. 
Moreover, the advantages of declarative information also apply to 
internal representation. The advantage of declarative information is one 
of generality. The fact that when  two objects collide they make a noise 
may  be used in particular situations to make a noise, to avoid making 
noise, to explain a noise, or to explain the absence of noise. (I guess 
those cars didn't collide, because while I heard the squeal of brakes, 
I didn't hear  a crash.] 
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Once one has decided to build an AI system that represents infor- 
mation declaratively, one still has to decide what kind of declarative 
language to allow. The simplest systems allow only constant predicates 
applied to constant symbols, for example, on(Block1, Block2). Next, one 
can allow arbitrary constant terms, built from function symbols 
constants and predicate symbols, for example, location(Block1)= 
top(Block2). Prolog databases allow arbitrary Horn clauses that include 
free variables, for example, P(x, y) A Q(y, z) D R(x, z), expressing the 
Prolog in standard logical notation. Beyond that lies full first-order logic, 
including both existential and universal quantifiers and arbitrary first- 
order formulas. Within first-order logic, the expressive power of a theory 
depends on what domains the variables are allowed to range. Important 
expressive power comes from using set theory, which contains expres- 
sions for sets of any objects in the theory. 

Every increase in expressive power carries a price in the required 
complexity of the reasoning and problem-solving programs. To put it 
another way, accepting limitations on the expressiveness of one's 
declarative information allows simplification of the search procedures. 
Prolog represents a local optimum in this continuum, because Horn 
clauses are medium expressive but can be interpreted directly by a 
logical problem solver. 

One major limitation that is usually accepted is to limit the derivation 
of new facts to formulas without variables, that is, to substitute constants 
for variables and then do propositional reasoning. It appears that most 
human daily activity involves only such reasoning. In principle, Prolog 
goes slightly beyond this, because the expressions found as values of 
variables by Prolog programs can themselves involve free variables. 
However, this facility is rarely used except for intermediate results. 

What can't be done without more of predicate calculus than Prolog 
allows is universal generalization. Consider the rationale of canning. 
We say that a container is sterile if it is sealed and all the bacteria in 
it are dead. This can be expressed as a fragment of a Prolog program 
as follows: 

sterile(X) :- sealed(X), not alive-bacterium(Y, X). 
alive-bacterium(Y, X) :- in(Y, X), bacterium(Y), alive(Y). 

However, a Prolog program incorporating this fragment directly can 
sterilize a container only by killing each bacterium individually and 
would require that some other part of the program successively generate 
the names of the bacteria. It cannot be used to discover or rationalize 
canning--sealing the container and then heating it to kill all the bacteria 
at once. The reasoning rationalizing canning involves the use of 
quantifiers in an essential way. 

My own opinion is that reasoning and problem-solving programs 
will eventually have to allow the full use of quantifiers and sets and 
have strong enough control methods to use them without combinatorial 
explosion. 
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While the 1958 idea was well received, very few attempts were made 
to embody it in program in the immediately following years, the main 
one being Black's Harvard Ph.D. dissertation of 1964. I spent most of 
my time on what I regarded as preliminary projects, mainly LISP. My 
main reason for not attempting an implementation was that I wanted 
to learn how to express common sense knowledge in logic first. This 
is still my goal. I might be discouraged from continuing to pursue it 
if people pursuing nonlogical approaches were having significant 
success in achieving generality. 

McCarthy and Hayes [12] made the distinction between 
epistemological and heuristic aspects of the AI problem and asserted 
that generality is more easily studied epistemologically. The distinction 
is that the epistemology is completed when the facts available have as 
a consequence that a certain strategy is appropriate to achieve the goal, 
whereas the heuristic problem involves the search that finds the 
appropriate strategy. 

Implicit in [11] was the idea of a general-purpose, common sense 
database. The common sense information possessed by humans would 
be written as logical sentences and included in the database. Any goal- 
seeking program could consult the database for the facts needed to 
decide how to achieve its goal. Especially prominent in the database 
would be facts about the effects of actions. The much studied example 
is the set of facts about the effects of a robot trying to move objects 
from one location to another. This led in the 1960s to the situation 
calculus [12], which was intended to provide a way of expressing the 
consequences of actions independent of the problem. 

The basic formalism of the situation calculus is 

s' = result(e, s), 

which asserts that s' is the situation that results when event e occurs 
in situation s. Here are some situation calculus axioms for moving and 
painting blocks. 

Qualified Result-of-Action Axioms 

V x  l s.clear(top(x), s) A clear(l, s) A 
tooheavy(x) D loc(x, result(move(x, l), s ) ) =  I. 

V x  c s.color(x, result(paint(x, c), s ) ) =  c. 

Frame Axioms 

V x y l s.color(y, result(move(x, 1), s ) )=  color(y, s). 
V x y I s.y C x  D loc(y, result(move(x, l), s ) )= loc ( y ,  s). 

V x y c s.loc(x, result(paint(y, c), s)) = loc(x, s). 
V x  y c s.y C x D color(x, result(paint(y, c), s)) =color(x,  s). 

Notice that all qualifications to the performance of the actions are 
explicit in the premises and that statements (called frame axioms) about 
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what  doesn't  change when  an action is per formed are explicitly 
included. Without those statements it wouldn't  be possible to infer much 
about result(e2, result(el, s)), since we wouldn' t  know whe ther  the 
premises for the event e2 to have its expected result were  fulfilled in 
result(el, s). 

Notice fur ther  that the situation calculus applies only when  it 
is reasonable to reason about  discrete events, each of which results 
in a new total situation. Continuous events and concurrent  events 
are not covered. 

Unfortunately,  it wasn't  very  feasible to use the situation calculus 
in the manner  proposed, even for problems meeting its restrictions. In 
the first place, using general-purpose theorem provers made the 
programs run too slowly, since the theorem provers of 1969 [9] had no 
way of controlling the search. This led to STRIPS [6], which reduced 
the use of logic to reasoning within a situation. Unfortunately,  the 
STRIPS formalizations were  much  more special than full situation 
calculus. The facts that were included in the axioms had to be delicately 
chosen in order to avoid the introduction of contradictions arising from 
the failure to delete a sentence that wouldn ' t  be true in the situation 
that resulted from an action. 

I 1_)7 I 

'I u r i , l g  

A w u r l l  

l a i r  I I i  it" 

Nonmonotonicity 
The second problem with the situation calculus axioms is that they 

were again not general enough. This was the qualification problem, and 
a possible way around it wasn't discovered until the late 1970s. Consider 
putting an axiom in a common sense database asserting that birds can 
fly. Clearly the axiom must be qualified in some way since penguins, 
dead birds, and birds whose feet are encased in concrete can't fly. A 
careful construction of the axiom might succeed in including the 
exceptions of penguins and dead birds, but  clearly we can think up as 
many additional exceptions, like birds with their feet encased in 
concrete, as we like. Formalized nonmonotonic  reasoning (see [4], 
[15]-[17], and [23]) provides a formal way of saying that a bird can fly 
unless there is an abnormal  circumstance and of reasoning that only 
the abnormal  circumstances whose existence follows from the facts 
being taken into account will be considered. 

Nonmonotonic i ty  has considerably increased the possibility of 
expressing general knowledge about the effects of events in the situation 
calculus. It has also provided a way of solving the frame problem, which 
constituted another obstacle to generality that was already noted in [12]. 
The frame problem (the term has been variously used, but I had it first) 
occurs when  there are several actions available, each of which changes 
certain features of the situation. Somehow it is necessary to say that 
an action changes only the features of the situation to which it directly 
refers. When  there is a fixed set of actions and features, it can be 
explicitly stated which features are unchanged by an action, even 
though it may  take a lot of axioms. However,  if we imagine that 
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additional features of situations and additional actions may be added 
to the database, we face the problem that the axiomatization of an action 
is never completed. McCarthy [16] indicates how to handle this using 
circumscription, but Lifschitz [10] has shown that circumscription needs 
to be improved and has made proposals for this. 

Here are some situation calculus axioms for moving and painting 
blocks using circumscription taken from [16]. 

Axioms about Locations and the Effects of Moving Objects 

V x  e s . - ,ab(aspec t l (x ,  e, s))  D loc(x, result(e, s ) ) = l o c ( x ,  s). 
V x l s .ab(aspectl(x ,  move(x, /), s)). 

V x l s.-~ ab(aspect3(x,  l, s))  D loc(x, result(move(x, I), s))  = l. 

Axioms about Colors and Painting 

V x e s .~ ab(aspect2(x,  e, s)) D color(x, result(e, s ) )=co lor (x ,  s). 
V x c s.ab(aspect2(x, paint(x,  c), s)) .  

V x c s. "-i ab(aspect4(x,  c, s)) D color(x, result(paint(x, c), s)) = c. 

This treats the qualification problem, because any number of 
conditions that may be imagined as preventing moving or painting can 
be added later and asserted to imply the corresponding ab aspect . . . .  
It treats the frame problem in that we don't have to say that moving 
doesn't affect colors and painting locations. 

Even with formalized nonmonotonic reasoning, the general common 
sense database still seems elusive. The problem is writing axioms that 
satisfy our notions of incorporating the general facts about a phenom- 
enon. Whenever we tentatively decide on some axioms, we are able 
to think of situations in which they don't apply and a generalization 
is called for. Moveover, the difficulties that are thought of are often 
ad hoc like that of the bird with its feet encased in concrete. 

Reif icat ion 
Reasoning about knowledge, belief, or goals requires extensions of 

the domain of objects reasoned about. For example, a program that does 
backward chaining on goals uses them directly as sentences: on (Blockl, 
Block2); that is, the symbol on is used as a predicate constant of the 
language. However, a program that wants to say directly that on(Blockl, 
Block2) should be postponed until on(Block2, Block3) has been achieved 
needs a sentence like precedes(on(Block2, Block3), on(Blockl,  Block2)), 
and if this is to be a sentence of first-order logic, then the symbol on 
must be taken as a function symbol, and on(Blockl ,  Block2) regarded 
as an object in the first-order language. 

This process of making objects out of sentences and other entities 
is called reification. It is necessary for expressive power but again leads 
to complications in reasoning. It is discussed in [13]. 
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Formalizing the Not ion  of Context 
Whenever  we write an axiom, a critic can say that the axiom 

is true only in a certain context. With a little ingenuity the critic 
can usually devise a more general context in which the precise form 
of the axiom doesn't  hold. Looking at human  reasoning as reflected 
in language emphasizes this point. Consider axiomatizing "on" so 
as to draw appropriate consequences  from the information expressed 
in the sentence, "The book is on the table." The critic may propose 
to haggle about the precise meaning of "on," invent ing difficulties 
about what  can be be tween the book and the table or about how 
much  gravity there has to be in a spacecraft  in order to use the word 
"on" and whether  centrifugal force counts. Thus we encounter  Socratic 
puzzles over what  the concepts mean in complete generality and 
encounter  examples that never  arise in life. There simply isn't a most 
general context. 

Conversely, if we axiomatize at a fairly high level of generality, 
the axioms are often longer than is convenient  in special situations. 
Thus humans  find it useful to say, "The book is on the table," omitting 
reference to t ime and precise identifications of what  book and 
what  table. This problem of how general to be arises whether  the 
general common  sense knowledge is expressed in logic, in program, 
or in some other formalism. (Some people propose that the knowledge 
is internally expressed in the form of examples only, but  strong 
mechanisms using analogy and similarity permit their more general use. 
I wish them good fortune in formulating precise proposals about what  
these mechanisms are.) 

A possible way out involves formalizing the notion of context and 
combining it with the circumscript ion method of nonmonotonic  
reasoning. We add a context parameter  to the functions and predicates 
in our axioms. Each axiom makes its assertion about a certain context. 
Further axioms tell us that facts are inherited by more restricted context 
unless exceptions are asserted. Each assertion is also nonmonotonically 
assumed to apply in any particular more general context, but there again 
are exceptions. For example, the rules about birds flying implicitly 
assume that there is an a tmosphere  to fly in. In a more general context 
this might not be assumed. It remains to determine how inheri tance 
to more general contexts differs f rom inheri tance to more specific 
contexts. 

Suppose that whenever  a sentence p is present  in the memory  of 
a computer, we consider it as in a particular context and as an abbrevia- 
tion for the sentence holds(p, C), where  C is the name of a context. 
Some contexts are very specific, so that Watson is a doctor in the context 
of Sherlock Holmes stories and a baritone psychologist in a tragic opera 
about the history of psychology. 

There is a relation cl < c2 meaning that context c2 is more general 
than context cl. We allow sentences like holds(cl < c2, cO) so that 
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even s ta tements  relating contexts can have contexts. The theory  would 
not provide for any  "most  general  context" any  more  than Zermelo - 
Frankel  set theory  provides for a most  general  set. 

A logical sys tem using contexts might  provide operat ions of entering 
and leaving a context yielding what  we might call ultranatural deduction 
allowing a sequence  of reasoning like 

holds(p, C) 
ENTER C 

P 

q 
LEAVE C 
holds(q, C). 

This resembles  the usual logical natural  deduct ion systems,  but  for 
reasons beyond the scope of this lecture, it is p robab ly  not correct  to 
regard contexts as equivalent  to sets of a s s u m p t i o n s - - n o t  even infinite 
sets of assumptions .  

All this is unpleasant ly  vague, but it 's a lot more  than  could be said 
in 1971. 
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