
1976 ACM "I't~rb~g Award Lecture

Logic and
D a n a S, Scott
(.~liversity of Oxford

Programming Languages

Logic has been hmg interested in whether answers
to certain q~estions are computable in prindpJe, since
the outcnme puts bo~nds o~ the possibilities of
forma~izatinn° More recently, precise comparisons in
tim efficiency of decision methods have become
avai~aMe thrn~gh ~he developments in comp~exi~ty
itheory. These, however, are applications to ~ngic, and a
big q~msdon is whether methods of ~ogic have
signification i~ the other direction for the more applied
paris of eomp~tahi~ity theory°

Programmh~g ~ang~ages offer an obvious
oppnrtanity as ~heir syniactic formalization is we~
advanced; howe,or , the semantical theory can hardly
be said to be cmnp~ete, Through we have many
examples, we have still to give wide-ranging
mathematical answers to these queries: What is a
machi~e? What is a computaMe process? How (or how
weR) does a machine simulate a process? Programs
nat~ra~y enter in giving descriptions of processes, The
definition of the precise meaning of a program then
requires ~s lo explain what are the objects of
cm~pntation (in a way, the statics of the proMem) and
how they are to be transfnrmed (the dynamics)°

So far the ~theories of antomata and of nets, though
mast interesting for dynamics, have formalized on~y a

portion of the field, and there has been perhaps too
m~ch concentration on the finite-state and a~gebra~c
aspects, ~t would seem that the anderstanding of
h lgherdevd program features ~nvo~ves ~s with infinite
objects and %tees ~as to pass throngh severa~ leve{s of
explanation to go from the conceptual ideas to the finns
simulation on a real macNneo These ~evds can be made
mathemaficaRy exact ~f we can find the right
abstractions to represent the necessary structures°

The experience of many h~dependent workers with
the method of data types as ~attices (or parfia~
orderiegs) under an information content ordering, and
with their continuous mappings, has demonst ra ted the
flexibility of this approach in providh~g definitions and
proofs, which are dean and without undone dependence
on implementationso Never thdess nmch remMns to
be dram in showing how abstract conceptaa~izafions can
(or cannot) be actualized be%re we can say we have a
~mified theory.

Key Words and Phrases: ~ogie, programming
languages, au tomata , denotationM seman~cics, ko
ca~culns.mode~s, computabili ty, partial fnnctions,
approximation, flmefion spaces

CR Categories: 1o2, 4,20, 5.21, 5o24, 5.27

As the elevet>and-or~e-half-th Turing lecturer, it
gives rne the greatest pleasure to share this prize and
this podium with Michael Rabin, Alas, we have not had
much cha~me to collaborate since the time of writing
our 1959 paper, and that is for me a great loss, I work
best in collaboration, but it is not easy to arrange the
right condi t ions-especial ly in interdisciplinary sub-
jects and where people are separated by international
boundaries. But I have followed his career with deep
interest and admiration. As you have heard today,
Rabin has been able to app@ ideas from logic having to
do with decidability, computability and complexity to

Copyright © 1977. Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Author's Address: Mathematical Institute, University of Oxford,
24-29 St. Giles, Oxford OX1 3LB. U.K.

634

questions of real mathematical and computat ional in-
terest. He, and many others, are actively creating new
methods of analysis for a wide class of algorithmic
problems which has great promise for future develop-
ment. These aspects of the theory of computat ion are,
however, quite outside my competence, since over the
years my interests have diverged from those of Rabin.
From the late 1960's my own work has concentrated on
seeing whether the ideas of logic can be used to give a
better conceptual understanding of programming lan-
guages. I shall therefore not speak today in detail about
my past joint work with Rabin but about my own
development and sorne plans and hopes for the future.

The difficulty of obtaining a precise overall view of
a language arose during the period when committees
were constructing mammoth "universal" computer lan-
guages. We stand now, it seems, on the doorstep of yet
another technological revolution during which our
ideas of machines and software are going to be com-
pletely changed. (I have just noted that the ACM is

Communications September 1977
of Volume 20
the ACM Number 9

campaigi~ing again to eliminate the word 'machine'
altogether.) The big, big languages may prove to be not
very adaptable, but I think the problem of seraatzfics
will surely remain.)~ would like to think that the w o r k -
again done in collaboration with other people, most
~qotabty with the late Christopher S t r achey - has made
a basic contribution to the foundations of the semantic
enterprise. Welt, we shall see. I hope too that the
research on semantics will not to() much longer remain
dis,ioint from investigations like Rabin's.

Af,~ Apology and a Nonapo~iogy

As a rule, I think, public speakers should not apolo-
gize: it only makes the audience uncomfortable, At
such a meeting as this° however, one apology is neces-
sary (along with a disclaimer).

Those of you who know my background may well
be rein.laded of Sir Nicholas Gimcrack, hero of the play
The Virtuoso. It was written in 1676 bY Thomas Shad-
well to poke a little fun at the remarkable experimenfs
then being done before the Royal Society of London.
At one point in the play, Sir Nicholas is discovered
lying on a table trying to learn to swim by imitating the
motions of a frog in a bowl of water. When asked
whether he had ever practiced swimming in water, he
replies that he hates water and would never go near it!
"I content myself," he said, "with the speculative part
of swimming; I care not for the practical, l seldom bring
anything to use Knowledge is the ultimate end."

Now though our ultimate aims are the same, I
hasten to disassociate myself from the attitude of dis-
(lain for the practical. It is, however, the case that I
have no practical experience in present-day program-
ruing; by necessity I have had to confine myself to
speculative programming, gaining what knowledge I
could at second hand by watching various frogs and
other creatures. Luckily for me, some of the frogs could
speak. With some of them I have had to learn an alien
language, and perhaps I have not understood what they
were about. But I have tried to read and to keep up
with developments, t apologize for not being a profes-
sional in the programming field, and I certainly, there-
fore, will not try to sermonize: many of the past Turing
lecturers were well equipped for that, and they have
given us very good advice. What I t ry to do is to make
some results from logic which seem to me to be relevant
to computing comprehensible to those who could make
use of them. I have also tried to add some results of my
own, and I have to leave it to you to judge how
successful my activities have beem

Most fortunately today I do not have to apologize
for the lack of published material; if I had written this
talk the day I received the invitation; I might have. But
in the August number of Communications we have the
excellent tutorial paper by Robert Tennen t [14] on
denotational semantics, and I very warmly recommend

635

it as a starting piace. Tennent not only provides serious
examples going well beyond what Strachey and [ever
published, but he also has a well-organized bibliog-
raphy.

Only last month the very hefty book by Milne and
Strachey [9] was published. Strachey's shockingly sud-
den and untimely death unfortunately prevented him
from ever starting on the revision of the manuscript.
We have lost much in style and insight (to S{~Y nothing
of inspiration) by Straclney's passing, but Robert Milne
has carried out their plan admirably. What is important
about the book is that it pushes the discussion of a
complex language through from the begit~ning to the
end. Some may find the presentation to() rigorous, but
the point is that the semantics of the book is not mere
speculation but the real thing, tt is the product of
serious and informed thought; thus, one has the de-
'Jailed evidence to decide whether the approach is going
to be fruitful. Milne has organized the exposition so
one can grasp the language on many levels down to the
final compiler. He has not tried to sidestep any difficul-
ties. Though not lighthearted and biting, as Strachey
often was in conversation, the book is a very fitting
memorial to the last phase of Strachey's work, and it
contains any number of original contributions by Milne
himself. (I can say these things because I had no hand
in writing the book myself.)

Recently published also is the volume by Donahue
[4]. This is a not too long and very readable work that
discusses issues not covered, or not covered from the
same point of view, by the previously mentioned
references. Again, it was written quite independently
of Strachey and me, and I was very glad to. see its
appearance.

Soon to come out is the textbook by Joe Stoy [:13].
This will complement these other works and should be
very useful for teaching, because Stoy has excellent
experience in lecturing, both at Oxford University and
at M.I.T.

On the foundational side, my own revised paper
(Scott [12]) will be out any moment in the SIAM
Journal on Computing. As it was written from the point
of view of enumeration operators in more "classical"
recursion theory, its relevance to practical computing
may not be at all clear at first glance. Thus I am
relieved that these other references explain the uses of
the theory in the way t intended.

Fortunately all the above authors cite the literature
extensively, and so I can neglect going into further
historical detail today. May I only say that many other
people have taken up various of the ideas of Strachey
and myself, and you can find out about their work not
only from these bibliographies bu t also, for example,
from two recent conference proceedings, Manes [7]
and B6hm [1]. If I tried to list names here, I would only
leave some o u t - t h o s e that have had contact with
me know how much I appreciate their interest and
contributions.

Communications September 1977
of Volume 20
the ACM Number 9

Some Perso~a~ Notes

I was born h~ California and began my work in
mathematical logic as an undergraduate at Berkeley in
the early] 950's. The primary hfflucnce was, of course,
Alfred Tarski together with his many cnlleagues and
students at the University of California. Among many
other things. I learned recursive function theory from
Raphael and,tulia Robinson, whom I want to thank for
mm~erous insights. Also at the time through seltUstudy I
found o u t about tlne X-calculus of Curry and Church
(which° literally~ gave me nightmares at first). Espe-
cially important for my later ideas was the study of
Tarski 's semantics and his definition of truth for for-
malized ~anguages, These concepts are still being hotly
debated today in the philosophy of natural language, as
you k~aow, t have tried to carry over the spirit of
Tarski 's approach to algorithmic languages, which at
least have the advantage of being reasonably well for-
malized syntactically. Whether I have found the right
denotations of terms as guided by the schemes of
Strachey (anti workcd out by many hands) is what
needs discussion. 1 am the first to say that not all
problems are sob/ed just by giving denotations to some
languages. Languages like (the very pure) k-calculus
are well served, but many programming concepts are
still not covered.

My graduate work was completed in Princeton in
/958 under the directiou of Alonzo Church, who also
supervised Michael Rabin's thesis. Rabin and I met at
that time, but it was during an U}M summer job in 1957
that we did our joint work on automata tt~eory, lit was
hardly carried out in a vacuum, since many people were
working in the area; but we did manage to throw some
basic ideas into sharp relief. At the time I was certainly
thinking of a project of giving a mathematical definition
of a machine, t feel now that the finite-state approach is
only partially successftfl and without much in the way of
practical implication. True, many physical machines
can be modelled as finite-state devices; but the finite-
hess is hardly the most important feature, and the
automata point of view is often rather superficial.

Two later developments made automata seem to me
more interesting, at least mathematically: the Chomsky
hierarchy and the connections with semigroups. From
the algebraic point of view (to my taste at least) Ellen-
berg, the Euclid of automata theory, in his books [5]
has said pretty much the last word. I note too that he
has avoided abstract category theory. Categories may
lead to good things (cf. Manes [7]), but too early a use
can only make things too difficult to understand. That
is my personal opinion.

In some ways the Chomsky hierarchy is in the end
disappointing. Context-free languages are very impor-
tant and everyone has to learn about them, but it is not
at all clear to me what comes n e x t - i f anything. There
are so many other families of languages, but not much
order has come out of the chaos. I do not think the last

636

word has been said here. It was not knowing Where to
turn, and being displeased with what I thought was
excessive complexity, that made me give up working in
automata theory. I tried once in a certain way to con-
nect automata and programming languages by suggest-
ing a more systematic way of separating the machine
from the program. Eilenberg heartily disliked tile idea,
but I was glad to see the recent book by Clark and
Cowell [2] where, at the suggestion of Peter Landin,
the idea is carried out very nicely. It is not algebra, I
admit, but it seems to me to be (elementary, somethat
theoretical) programming. I would like to see the next
step, which would fall somewhere in between Manna
{8] and Milne-Straehey [9].

It was at Princeton that I had my first introduction
to real m a c h i n e s - the now atrnost prehistoric w)n Neu-
mann machine. I have to thank Forman Acton for that.
Old fashioned as it seems now, it was still real; and Hale
Trotter and I had great fun with it. How very sad I was
indeed to see the totally dead corpse in the Smithsonian
Museum with no indication at all what it was like when
it was alive.

From Princeton I went to the University of Chicago
to teach in the Mathematics Depar tment for two years.
Though I met Bob Ashenhurst and Nick Metropolis at
that time, my stay was too short to learn from them;
and as usual there is always too great a distance be-
tween departments. (Of course, since I am only writing
about connections with computing, I am not trying to
explain my other activities in mathematics and logic.)

From Chicago I went to Berkeley for three years.
There I met many computer people through Flarry
Huskey and Ren6 de Vogelaere, the latter of whom
introduced me to the details of Algol 60. There was,
however, no Computer Science Depar tment as such in
Berkeley at that time. For personal reasons I decided
soon to move to Stanford. Thus, though I taught a
course in Theory of Computat ion at Berkeley for one
semester, my work did not amount to anything. One
thing I shall always regret about Berkeley and Comput-
ing is that I never learned the details of the work of
Dick and Emma Lehmer , because I very much admire
the way they get results in number theory by machine.
Now that we have the Four-Color Problem solved by
machine, we are going to see great activity in large-
scale, special-purpose theorem proving. I am very sorry
not to have any hand in it.

Stanford had from the early 1960's one of the best
Computer Science departments in the country, as
everyone agrees. You will wonder why I ever left. The
answer may be that my appointment was a mixed one
between the departments of Philosophy and Mathe-
matics. I suppose my personal difficulty is knowing
where I should be and what I want to do. But personal
failings aside, I had excellent contacts in Forsythe's
remarkable department and very good relations with
the graduates, and we had many lively courses and
seminars. John McCarthy and Pat Suppes, and people

Communications September 1977
of Volume 20
the ACM Number 9

from their groups, had much influence on me and my
views of computing. In Logic, with my colleagues Sol
Feferman and Georg Kreisel, we had a very active
group. Among the many Ph.D. students in Logic, the
work of Richard Platek had a few years later, when I
saw how to use some of his ideas, much influence on
m e,

At this point ~ had a year's leave in Amsterdam
which proved unexpectedly to be a turning point in my
intellectual development. I shall not go into detail,
since the story is complicated; but the academic year
1968/69 was one of deep crisis for me, and it is still very
painful for me to think back on it. As luck would have
it, however, Pat Suppes had proposed my name for the
IFIP Working Group 2.2 (now called Formal Descrip-
tion of Programming Concepts). At that time Tom
Steel was Chairman, and it was at the Vienna meeting
that I first met Christopher Strachey. If the violence of
the arguments in this group are any indication, I am
really glad I was not involved with anything important
like the Algol Committee. But I suppose fighting is
therapeutic: it brings out the best and the worst in
people. And in any case it is good to learn to defend
oneself. Among the various combatants I liked the style
and ideas of Strachey best, though I think he often
overstated his case; but what he said convinced :me I
should learn more.

It was only at the end of my year in Amsterdam that
I began to talk with Jaco de Bakker, and it was only
through correspondence over that summer that our
ideas took definite shape. The Vienna mM Group that I
met through WG 2.2 influenced me at this stage also.
In the meantime] had decided to leave Stanford for the
Princeton Philosophy Department; but since I was in
Europe with my family, I requested an extra term's
leave so I could visit Strachey in Oxford in the fall of
1969. That term was one of feverish activity for me;
indeed, for several days, I felt as though I had some
kind of real brain fever. The collaboration with
Strachey in those few weeks was one of the best experi-
ences in my professional life. We were able to repeat it
once more the next summer in Princeton, though at a
different level of excitement. Sadly, by the time I came
to Oxford permanently in 1972, we were both so in-
volved in teaching and administrative duties that real
collaboration was nearly impossible. Strachey also be-
came very discouraged over the continuing lack of
research funds and help in teaching, and he essentially
withdrew himself to write his book with Milne. (It was a
great effort and I do not think it did his health any
good; how I wish he could have seen it published.)

Returning to 1969, what I started to do was to show
Strachey that he was all wrong and that he ought to do
things in quite another way. He had originally had his
attention drawn to the X-calculus by Roger Penrose and
had developed a handy style of using this notation for
functional abstraction in explaining programming con-
cepts. It was a fot~mal device, however, and I tried to

637

argue that it had tie mathematical basis. I have told this
story before, so to make it short, let me only say that in
the first place I had actually convinced him by "supe-
rior logic" to give up the type-free X-calculus. But then,
as one consequence of my suggestions followed the
other, I began to see that computable functions could
be defined on a great variety of spaces. The real step
was to see that function-spaces were good spaces, and I
remember quite clearly that the logician Andrzej Mos-
towski, who was also visiting Oxford at the time, simply
did not believe that the kind of function spaces I de-
fined had a constructive description. But when I saw
they actually did, I began to suspect that the possibili-
ties of using function spaces might just be more surpris-
ing than we had supposed. Once the doubt about the
enforced rigidity of logical types that I had tried to push
onto Strachey was there, it was not long before I had
found one of the spaces isomorphic with its own func-
tion space, which provides a model of the "type--free"
h-calculus. The rest of the story is in the literature.

(An interesting sidelight on the X-calculus is the r61e
of Alan Turing. He studied at Princeton with Church
and connected computability with the (formal) X-calcu-
lus around 11936/37. Illuminating details of how his
work (and the further influence of h-calculus) was
viewed by Steve Kteene can be found in Crossley [3].
(Of course Turing's later ideas about computers very
much influenced Strachey, but this is not the time for a
complete historical analysis.) Though 1 never met Tur-
ing (he died in 1954), the second-hand connections
through Church and Strachey and my present Oxford
colleagues, Les Fox and Robin Gandy, are rather close,
though by the time I was a graduate at Princeton,
Church was no longer working on the X-calculus, and
we never discussed his experiences with Turing.)

It is very strange that my X-calculus models were not
discovered earlier by someone else; but I am most
encouraged that new kinds of models with new proper-
ties are now being discovered, such as the "powerdo-
mains" of Gordon Plotkin [10]. I am personally con-
vinced that the field is well established, both on the
theoretical and on the applied side. John Reynolds and
Robert Milne have independently introduced a new
inductive method of proving equivalences, and the in-
teresting work of Robin Milner on LCF and its proof
techniques continues at Edinburgh. This direction of
proving things about models was started off by David
Park's theorem on relating the fixed-point operator and
the so-called paradoxical combinator of X-calculus, and
it opened up a study of the infinitary, yet computable
operators which continues now along many lines. An-
other direction of work goes on in Novosibirsk under
Yu.L. Ershov, and quite surprising connections with
topological algebra have been pointed out to me by
Karl H, Hofmann and his group. There is no space here
even to begin to list the many contributors.

In looking forward to the next few years, I am
particularly happy to report at this meeting that Tony

Communications September 1977
of Volume 20
the ACM Number 9

H o a r e has recent ly accepted the Ctlair of Computa t ion
at Oxford , now made pe rmanen t since St rachey ' s pass-
ing, This opens up all sorts of new possibil i t ies for
co l labora t ion , both with t~oare and with the many
s tudents he will a t t ract after he takes up the post next
year. And , as you know, the practical aspects of use
and design of compu te r languages and of p rogramming
methodo logy will certainly be stressed at Oxford (as
Strachey did too, t hasten tn add) , and this is all to the
good; but there is also excellent hope for theoret ical
invest igat ions.

bleness is to be found in Scott [12], but of course the
s tructure s tudied there is specia l . P robab ly it is best
nei ther to exclude or include a ±; and, for s impl ic i ty , i
shall not ment ion it fur ther today .)

Looking now at ,% the domain of s equences , we
shall employ a sho r thand no ta t ion where subscr ipts

indicate the coord ina tes ; thus,

x - (x ,) 7 = 0

for a11x C ,~. Each term is such that x , ~52 :~, because ,~
-- . ~ . 7?chnical@, a "d i rec t p r o d u c t " of s t ruc tures is
in tended , so we def ine c on ,~ by

Some Sema~ttic Structures

Turning now to technical details, [should like to
give a brief indication of how my construction goes, and
how it is open to considerable variat ion. It will not be
possible to argue here that these are the " r igh t" ab-
stractk:ms, and that is why it is a relief to have those
references rnc~tioned earl ier so easily available.

Perhaps the quickest indication of what I arn gett ing
at is provided by two domains: ;~, the domain of Boo-
teat~ values, and .7 :}£~, the domain of infinite se-
quences of Boolean values. The first main point is that
we are going to accept the idea of partial functions
represen ted mathemat ica l ly by giving the functions
from lime to time parfia! values. As far as ;N goes the
idea is very trivial: we write

,~ :': {true, .fidse, ±}

where L is an extra e lement called "the undef ined ." In
order to keep L ira its place we impose a part ial order ing
f; <m the domabl ;:~, where

x c : y i f f e i t he r x = Z or x y,

for all x, y c~.2 :~l. It will not rnean all that much here in
,~, but we can read "g" as saying that the informat ion
content o f x is contained in the information content of
y , The e lement Z has, therefore , empty informat ion
content . The scheme is i l lustrated in Figure 1.

Fig. 1. The Boolean values.

m~e fi, tse

Jk

(An aside: in many publ icat ions I have advoca ted
using lattices, which as part ia l order ings have a " t o p "
e lement T as well as a " b o t t o m " e lement .1.,, so that we
can assert ± ¢:x g T for all e lements of the domain . This
suggestion has not been well received for many reasons
I cannot go into here. Some discussion of its reasona-

x g y iff x,, c:y~,, for all n.

Intuit ively, a sequence y is " b e t t e r " in i n fo rma t ion than
a sequence x iff some of the c o o r d i n a t e s of x which
were ° 'undef ined" have passed over in to "be ing de-
f ined" when we go from x to y . For e x a m p l e , each of
the following sequences s tands in the re la t ion r- to the
following ones:

(2 , 2 , 2 , Z),
(true, Z, J_, Z, . . .),
(true,.f?dse, ±, 2 , . . .),
(true, Calse, true, ±).

Clear ly this list could be e x p a n d e d inf ini te ly , and there
is also no need to t rea t the coo rd ina t e s in the strict
o rde r n = 0, 1, 2 Thus the ~ re la t ion on ,~ i s far
more complex than the or iginal c on 27/3.

An obvious d i f ference be tween ~ and ,9 ~ is tha t ?~ is
finite while 8 / h a s inf intely many e l emen t s . In ,~, also,
certain e lements have infinite in jbrmat ion content ,
whereas this is not So in ~ . H o w e v e r , we can employ
the par t ia l o rder ing in J to expla in abs t rac t ly what we
mean by "fini te a p p r o x i m a t i o n " and " l im i t s . " The se-
quences listed above are f ini te in Y because they have
only finitely many coord ina tes dis t inct f rom .1,. Given
any x C ,~ we can cut it down to a f ini te e l e m e n t by
defining

(x] m) , , = ~x~,, if n < m ;
[_k, if not.

It is easy to see f rom our def in i t ions that

x l m ~x l (m + 1) ~x,

so that the x I m are "bu i ld ing u p " to a l imit ; and , in
fact, that l imit is the or iginal x. W e write this as

x = 14 @Ira) ,

where IJ is the sup or l e a s t - u p p e r - b o u n d o p e r a t i o n in
the par t ia l ly o r d e r e d set .5'L The po in t is tha t 59° has
many sups; and, w h e n e v e r we have e l e m e n t s yU,~
/ "+~) in ~ (regardless of whe the r they are f ini te or
not) , we can def ine the " l imi t " z , where

so

z = LI y('~t
I~l=O

638 Communications September 1977
of Volume 20
the ACM Number 9

(Hint: ask yourself what the coordinates of z will have
to be.) We carmot rehash the details here, but ~ really
is a topological space, and z really is a limit. Thus.
though ,~ is infinitary, there is a good chance that we
can let manipulations fall back on finitary operations
and be abtc to discuss comptaable operations on c¢,
and on more complex domains.

Aside fron-i the sequence and partial-order structure
orl J . we can define many kinds of algebraic structure.
That is why /£ is a good example. For instance, up to
isomorphism the space satisfies

where on the fight-hand side the usual binary direct
product is intended. Abstractly, the domain ,50 x Y
consists of all ordered pairs @, y) withx, y ~ ~ , where
we define c on ~ x (f by

Cv', y) c @ ' y ') iffx c .r ' andy qy ' .

But for all practical purposes there is no harm in identi-
fying @, y) with a sequence already in 50; indeed coor-
dinatewisc we can define

_ j'x/,., ifn = 2k; y).
[Yk, ife~ 2k + 1.

The above criterion for ~. between pairs will be verified,
and we can say that ~ has a (bi-unique) pairing func-
tion.

The pairing function (. , •) on ,5 ° has many interest-
ing properties, in effect we have already noted that it is
monotonic (intuitively: as you increase the information
contents of x and y, you increase the information con-
tent of (x, y) .) More importantly, (. , .) is continuous in
the following precise sense:

(x,y)= LI 4~q-~ ,yq~x
tt~-- °

which means that (. , . } behaves well under taking finite
approximations. And this is only one example; the
whole theory of monotone and continuous functions is
very important to this approach.

Even with the small amount of structure we have
put on ~£, a language suggests itself. For the sake of
illustration, we concentrate on the two isomorphisms
satisfied by ~ ; namely, .Sf - ~J x ~ and S ° = ~ x ~ .
The first identified S ~ as having to do with (infinite)
sequences of Boolean values: while the second reminds
us of the above discussion of the pairing function. In
Figure 2 we set down a quick BNF definition of a
language with two kinds of expressions: Boolean (the
fi's) and sequential (the o-'s).
Fig. 2. A brief language.

,8 ::= true I false] head ~r

ff fl tthen cr' eJse or"
even o- [odd c r merge ~r'rr"

This language is very brief indeed: no variables, no
declarations, no assignments, only a miniature selec-

639

tion of constant terms. Note that the notation chosen
was meant to make the meanings of these expressions
obvious. Thus, if cr denotes a sequence x, then head <r
has got to denote the first term x0 of the sequence x. As
x0 ~ 28 andx ~E ,'T, we are keeping our types straight.

More precisely, for each expression we can define
its (constant) value ~[. ~ ; so that [[f i~ ff Z.8 for
Boolean expressions ,8, and ~ <r ~ ~ Yf for sequential
expressions. Since there are ten clauses in the BNF
language definition, we would have to set down ten
equations to completely specify the semantics of this
example; we shall content ourselves with selected equa-
tions here. To carry on with the remark in the last
paragraph:

On the other side, the expression /3* creates an infinite
sequence of Boolean values:

(This notation, though rough, is clear.) In the same
vein:

while we have

Further along:

[[o - :

and

m e r g e cr'c/' ~_ = (~r~' ~ , ~ o-" ~) .

These should be enough to give the idea. tt should also
be clear that what we have is really only a selection,
because ~ satisfies many more isomorphisms (e.g., S ~
= ~ x 50 x .90, and there are many, many more ways
of tearing apart and recombining sequences of Boolean
va lues -a l l in quite computable ways.

T h e F u n c t i o n S p a c e

It should not be concluded that the previous section
contains the whole of my idea: this would leave us on
the elementary level of program schemes (e.g. van
Emden-Kowalski [6] or Manna [8] (last chapter)).
What some people call "Fixpoint Semantics" (I myself
do not like the abbreviated word "fixpoint") is only a
first chapter. The second chapter already includes pro-
cedures that take procedures as a rgumen t s -h ighe r -
type p r o c e d u r e s - a n d we are well beyond program
schemes. True, fixed-point techniques can be applied
to these higher-type procedures, but that is not the only
thing to say in their favor. The semantic structure
needed to make this definite is the function space. I

Communications September i977
of Volume 20
the ACM Number 9

have tried to stress this from the start in 1969, but
many people have not understood me well enough.

Suppose 2," arm 5" are two domains of the kind we
have been discussing (say, 2,9 or ;73 x ;~:~ or .50 or some-
thing worse). By {fig' -~ (/ '] let us urlderstand the
domain of all monotone and continuous func t ions j '
mappb~g 2/' into ~Y"'. This is what I mean by a fiu.zctioez
,vpace. it is not all that difficult mathematically, but it is
not all that obvious either that [2/;' --* ~"] is again a
domai~l " o f the same kind," though adnlittedly of a
more complicated structure. I cannot prove it here, but
at least I can define the c relation on the function space:

j r:::g ifff(,r) cg(,r) for allx ~Z ~Y',

Treating functiorls as abstract objects is re)thing new;
what has to be checked is that they are also quite
reasonable oSjecLs' o f cornpumfion. The relation :~ on
[Sx" --* 2j;"] is the first step in checking this, and it leads
to a wall-behaved notion of a finite approximation to a
function. (Sorry! there is no time to be more precise
here0 And when that is seen, the way is open to
iteradon of function spaces; as in [[2'---* 2"] -> ri, f,,].
This is not as crazy as it might seern at first, since our
theory identifiesf(.v) as a computable binary function of
t, ariable j and variable x. Thus, as an operation, it can
be seen as an e@mem of a function space:

I l l : i / ' o"1 x ~ " l ,-* u " l .

This is only the start of a theory of these operators (or
combmators', as Curry and Church call them).

Swallowing all this, let us attempt an infinite itera-
tior~ of function spaces beginning with .50, We define (#0
= ,!/' and ,%, ~ [<~z: __> ,50]. ~l'hus ,~]~ = [,9O--> ,9O] and

.'~', = [[[[,~e-.~ ,9o]--..5o] ~ ,9ol,

You just have to believe me that this is all highly
constructive (because we employ only the continuous
functions).

It is fairly clear that there is a natural sense in which
this is eurm~lative. In the first place 5° is "contained in"
[,9O -.> .50] as a subspace: identify each x ~ 5° with tile
corresponding cor~stant function in [(f--~ ~] . Clearly by
our definiti(ms this is an order-preserving correspond-
ence. Also each j" ~ [J~---, Y'] is (crudely) approximated
by a constant, namelyf(J_) (this is the "best" element
all the valuesf(x)) . This relationship of subspace and
approximation between spaces will be denoted by

Pushing higher we can say

.[,50 ~ ~ '] < [[Se ~ ,50] ~ .5°],

but now for a diffkrent reason, Once we fix the reason
whY ~ q [,5O--~ ~] , we have to respect the function
space structure of the higher ?Y,,. In the special case,
s u p p o s e f ¢ [~--> ~] , We want to in jec t f into the next
space, so call it i(/) ¢ [,9 ° --~ 5°] --~ ~ . I fg is any element
in [~ - + ~'] we are being required to define i(f)(g) ~ ~ .
Now, since g ¢ [5°--> 5°], we have the original projec-

640

Fig. 3. The fir£chain ofisomorphisms.

; ~ x . : ; t :: [.:~, -~ s/ l x [y . , . . - , ~]
[.>, -, .'/, x ,7']

: : .~; .~

Fig. 4. The second chain ofisomorphisms.

= [[:~:,~, × .%] - , .Yl

= 0%~ -" .~]

tiorz backwards j(g) = g (t) ~ ..5 °. So, as this is the best
approximation to g we can get in if , we are stuck with
defining

i(f)(g) = EJ(g)).

This gives the next map i: ~ , --> ~ . To define the
corresponding project ion j : ~z --> ~1, we argue in a
similar way and define

j(@(x) = 6 (i ¢)) ,

where we have cb C [~ --> ~] --> ,5 °, and i(x) C [~ --> 5°]
is the constant function with value x. With this progres-
sion in mind there is no trouble in using an exactly
similar plan ill def in ing/ : 5'~ -~ ¢7a and j : ~s -* ,5;~. And
so on, giving the exact sense to the cumulation:

.3%< ~ , < a ~ < . . . < & < ~,,+~ <

Having all this, it would be a pity not to pass to the
limit (this time with spaces), and this is just what I want
you to accept. What is obtained by decreeing that there
is a space

Since the separate stages interact thus:

.£,+.~ = [& + ~] ,

it is not so queer to guess that

sv~ = [e ~ ~ s e t

holds (at least up to isomorphism). It does , but I can
only indicate the bare bones of the reason (and reason-
ableness) of this isomorphism. In the first place the
separate spaces ~, , have been placed one inside an-
other, which not only makes a tower of spaces but also
respects the combination¢~x) as an algebraic operation
of two variables, o ~ in a precise sense is the complet ion
of the union of the ~,~; 'that is within these spaces we
can think of towers of functions each approximating the
next (by the use of the i and. /mappings) , so that in .~o
these towers are given limits. If the towers are trun-
cated, then we can argue that each space .~,, <q o~oo.

Now why the isomorphism on . ~ ? Take a function
(continuous!) in [~ --> ~] . By its very continuity it will
be determined by what it does to the finite levels ~,~.

Communications September 1977
of Volume 20
the ACM Number 9

That is, it will have better and better approximations in
[2Y,-~ .qf] = ,~, ~; thus, the approximations "live" in
the finite levels of ~.~. Their limit ought to just give us
back the function [~ , -> .~] we started witl~. In the
same way ar~y element in ~ can be regarded as a limit
of approximate functions in the spaces [3;, --~ cf].
Admittedly there are details to check; but, in the limit,
there is no real dif%rence between ~ and [~ --> ~] :
the infinite level of higher type functions is its own
function space, (As always: this is a ,consequence of
continuity.)

Much structure is lurking under the surface here; in
fact more than I thought at first. In Figure 3, I illustrate
a chain of isomorphisms that shows that ~ gets much of
the character of ~ with which we were already familiar.
The reasons why these are valid are as follows. First,
we treat . ~ as a function space. Nowpairs offimctions
can be isomorphically put into correspondence with
functions taking on pairs o f values. But ~ x ~ = J as
we already know. The final step just puts functions on
g7,~ back to elements of g7~.

Using the isomorphism of Figure 3, we can gain the
further result illustrated in Figure 4. The reasons are
fairly clear. Take a function from ~o to ~ . The values
of this function can be construed as functions. But
consider that a function whose values are functions is
just (up to isomorphism of spaces) a function o f two
arguments. As we have seen in Figure 3, 2Y~ x ~ =
~ , , so we obtain the final simplification (up to iso-
morphism).

What we have done is to sketch why ~ , the space
of functions of infinite type, is a model of the X-calcu-
lus. The X-calculus is a language (not illustrated here),
where every term can be regarded as denoting both an
argument (or value) and a function at the same time.
The formal details are pretty simple, but the semantical
details are what we have been looking at: every ele-
ment of the space ~~ can be taken at the same time as
being an element of the space [. ~ ~ ~] ; thus, . ~
provides a model, but it is just one of many.

Without being able to be explicit, a denotational (or
mathematical) semantics was outlined for a pure lan-.
gtmge of procedures (also pairs and all the other stuff in
Figure 2). ha the references cited on real programming
languages, all the other features (of assignments, se-
quencing, declarations, etc., etc.) are added. What has
been established in these references is that the method
of semantical definition does in fact work. I hope you
will took into it.

References
I. B6hrn, C., t!:.'d, k-Calctdus and Computer Science Theor£.
Lecture Notes in Computer Sole:gee, Vol. 37, Springer-Verlag, New
York, 1975.
2, Clark, K.L., and CoweIl, D.F. Programs, Machines, a:~d
Computation. McGraw-Hill, New York, 1976.
3. Crossley, J.N., ed. Algebra and Logic. Papers from the 1974
Summer Res, Inst. Australian Math. Soc., Monash U. Clayton,
Victoria, Australia. Lecture No~es in Mathetnatics~ Vol. 450,
Springer-Verlag, New York, 1975.
4, Donahue, J.E. Complementary Definitions of Programming
Langctage Semantics. Lecture Notes in Compuwr Science, Vol. 42,
Springer-Verlag; 1976.
5. Eilenberg, S. Automata, Languages, and Machines, Academic
Press, New York, 1974.
6, van Emden, M.H., and Kowalski, R.A. The semantics of
predicate logic as a programming language. ,/. ACM 23, 4 (Oct.
1976), 733-742.
7. Manes, E.G., Ed. Category Theor£ Applied to Computation and
Control. First Int. Syrup. Lecture Notes in C?)mputer Science, VoI. 25,
Springer-Verlag, New York, 1976.
8. Manna, Z. Mathematical Theory of Computation. McGraw-Hill,
New York, 1974.
9, Mitne, R., and Strachey, C. A Theory of Programmi~lg
Language Semantical. Chapman and Hall, London, and Wiley, New
York, 2 Vols., 1976.
10, Plotkin, G.D, A powerdomain construction. SIAMJ. Comptng.
5 (1976), 452-487.
11. Rabin, M.D., and Scott, D.S, Finite automata and their decision
problems. IBM J. Res. and Develop. 3 (1959), 114-I25.
12, Scott, D.S. Data types as lattices. SIAM,I. Comptng. 5 (1976),
522-587.
13, Stoy, J.E. Denotational Semantics- The Scott-Strachey
Approach to Programming Language Theory. MA.T. Press,
Cambridge, Mass, To appear.
14, Tennent, R.D. The denotational semantics of programming
languages. Comm. ACM 19, 8 (Aug, 1976), 437-453.

641 Communications September 1977
of Volume 20
the ACM Number 9

