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Logic has been hmg interested in whether answers 
to certain q~estions are computable in prindpJe, since 
the outcnme puts bo~nds o~ the possibilities of 
forma~izatinn° More recently, precise comparisons in 
tim efficiency of decision methods have become 
avai~aMe thrn~gh ~he developments in comp~exi~ty 
itheory. These, however, are applications to ~ngic, and a 
big q~msdon is whether methods of ~ogic have 
signification i~ the other direction for the more applied 
paris of eomp~tahi~ity theory° 

Programmh~g ~ang~ages offer an obvious 
oppnrtanity as ~heir syniactic formalization is we~ 
advanced; howe,or ,  the semantical theory can hardly 
be said to be cmnp~ete, Through we have many 
examples, we have still to give wide-ranging 
mathematical answers to these queries: What is a 
machi~e? What is a computaMe process? How (or how 
weR) does a machine simulate a process? Programs 
nat~ra~y enter in giving descriptions of processes, The 
definition of the precise meaning of a program then 
requires ~s lo explain what are the objects of 
cm~pntation (in a way, the statics of the proMem) and 
how they are to be transfnrmed (the dynamics)° 

So far the ~theories of antomata and of nets, though 
mast interesting for dynamics, have formalized on~y a 

portion of the field, and there has been perhaps  too 
m~ch concentration on the finite-state and a~gebra~c 
aspects, ~t would seem that the anderstanding of 
h lgherdevd program features ~nvo~ves ~s with infinite 
objects and %tees ~as to pass throngh severa~ leve{s of 
explanation to go from the conceptual ideas to the finns 
simulation on a real macNneo These ~evds can be made 
mathemaficaRy exact ~f we can find the right 
abstractions to represent  the necessary structures° 

The experience of many h~dependent workers  with 
the method of data types as ~attices (or parfia~ 
orderiegs) under an information content ordering,  and 
with their continuous mappings,  has demonst ra ted  the 
flexibility of this approach in providh~g definitions and 
proofs, which are dean  and without undone dependence 
on implementationso Never thdess  nmch remMns to 
be dram in showing how abstract conceptaa~izafions can 
(or cannot) be actualized be%re we can say we have a 
~mified theory. 
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As the elevet>and-or~e-half-th Turing lecturer, it 
gives rne the greatest pleasure to share this prize and 
this podium with Michael Rabin, Alas, we have not had 
much cha~me to collaborate since the time of writing 
our 1959 paper, and that is for me a great loss, I work 
best in collaboration, but it is not easy to arrange the 
right condi t ions-especial ly  in interdisciplinary sub- 
jects and where people are separated by international 
boundaries. But I have followed his career with deep 
interest and admiration. As you have heard today, 
Rabin has been able to app@ ideas from logic having to 
do with decidability, computability and complexity to 
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questions of real mathematical  and computat ional  in- 
terest. He, and many others, are actively creating new 
methods of analysis for a wide class of algorithmic 
problems which has great promise for future develop- 
ment.  These aspects of the theory of computat ion are, 
however, quite outside my competence,  since over the 
years my interests have diverged from those of Rabin. 
From the late 1960's my own work has concentrated on 
seeing whether the ideas of logic can be used to give a 
better conceptual understanding of programming lan- 
guages. I shall therefore not speak today in detail about 
my past joint work with Rabin but about my own 
development and sorne plans and hopes for the future. 

The difficulty of obtaining a precise overall view of 
a language arose during the period when committees 
were constructing mammoth  "universal" computer  lan- 
guages. We stand now, it seems, on the doorstep of yet 
another  technological revolution during which our 
ideas of machines and software are going to be com- 
pletely changed. (I have just noted that the ACM is 
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campaigi~ing again to eliminate the word 'machine' 
altogether.) The big, big languages may prove to be not 
very adaptable, but I think the problem of seraatzfics 
will surely remain. )~ would like to think that the w o r k -  
again done in collaboration with other people, most 
~qotabty with the late Christopher S t r achey -  has made 
a basic contribution to the foundations of the semantic 
enterprise. Welt, we shall see. I hope too that the 
research on semantics will not to() much longer remain 
dis,ioint from investigations like Rabin's. 

Af,~ Apology and a Nonapo~iogy 

As a rule, I think, public speakers should not apolo- 
gize: it only makes the audience uncomfortable, At 
such a meeting as this° however, one apology is neces- 
sary (along with a disclaimer). 

Those of you who know my background may well 
be rein.laded of Sir Nicholas Gimcrack, hero of the play 
The Virtuoso. It was written in 1676 bY Thomas Shad- 
well to poke a little fun at the remarkable experimenfs 
then being done before the Royal Society of London. 
At one point in the play, Sir Nicholas is discovered 
lying on a table trying to learn to swim by imitating the 
motions of a frog in a bowl of water. When asked 
whether he had ever practiced swimming in water, he 
replies that he hates water and would never go near it! 
"I content myself," he said, "with the speculative part 
of swimming; I care not for the practical, l seldom bring 
anything to use . . . .  Knowledge is the ultimate end." 

Now though our ultimate aims are the same, I 
hasten to disassociate myself from the attitude of dis- 
(lain for the practical. It is, however, the case that I 
have no practical experience in present-day program- 
ruing; by necessity I have had to confine myself to 
speculative programming, gaining what knowledge I 
could at second hand by watching various frogs and 
other creatures. Luckily for me, some of the frogs could 
speak. With some of them I have had to learn an alien 
language, and perhaps I have not understood what they 
were about. But I have tried to read and to keep up 
with developments, t apologize for not being a profes- 
sional in the programming field, and I certainly, there- 
fore, will not try to sermonize: many of the past Turing 
lecturers were well equipped for that, and they have 
given us very good advice. What I t ry  to do is to make 
some results from logic which seem to me to be relevant 
to computing comprehensible to those who could make 
use of them. I have also tried to add some results of my 
own, and I have to leave it to you to judge how 
successful my activities have beem 

Most fortunately today I do not have to apologize 
for the lack of published material; if I had written this 
talk the day I received the invitation; I might have. But 
in the August number of Communications we have the 
excellent tutorial paper by Robert  Tennen t  [14] on 
denotational semantics, and I very warmly recommend 
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it as a starting piace. Tennent not only provides serious 
examples going well beyond what Strachey and [ ever 
published, but he also has a well-organized bibliog- 
raphy. 

Only last month the very hefty book by Milne and 
Strachey [9] was published. Strachey's shockingly sud- 
den and untimely death unfortunately prevented him 
from ever starting on the revision of the manuscript. 
We have lost much in style and insight (to S{~Y nothing 
of inspiration) by Straclney's passing, but Robert Milne 
has carried out their plan admirably. What is important 
about the book is that it pushes the discussion of a 
complex language through from the begit~ning to the 
end. Some may find the presentation to() rigorous, but 
the point is that the semantics of the book is not mere 
speculation but the real thing, tt is the product of 
serious and informed thought; thus, one has the de- 
'Jailed evidence to decide whether the approach is going 
to be fruitful. Milne has organized the exposition so 
one can grasp the language on many levels down to the 
final compiler. He has not tried to sidestep any difficul- 
ties. Though not lighthearted and biting, as Strachey 
often was in conversation, the book is a very fitting 
memorial to the last phase of Strachey's work, and it 
contains any number of original contributions by Milne 
himself. (I can say these things because I had no hand 
in writing the book myself.) 

Recently published also is the volume by Donahue 
[4]. This is a not too long and very readable work that 
discusses issues not covered, or not covered from the 
same point of view, by the previously mentioned 
references. Again, it was written quite independently 
of Strachey and me, and I was very glad to. see its 
appearance. 

Soon to come out is the textbook by Joe Stoy [:13]. 
This will complement these other works and should be 
very useful for teaching, because Stoy has excellent 
experience in lecturing, both at Oxford University and 
at M.I.T. 

On the foundational side, my own revised paper 
(Scott [12]) will be out any moment in the SIAM 
Journal on Computing. As it was written from the point 
of view of enumeration operators in more "classical" 
recursion theory, its relevance to practical computing 
may not be at all clear at first glance. Thus I am 
relieved that these other references explain the uses of 
the theory in the way t intended. 

Fortunately all the above authors cite the literature 
extensively, and so I can neglect going into further 
historical detail today. May I only say that many other 
people have taken up various of the ideas of Strachey 
and myself, and you can find out about their work not 
only from these bibliographies bu t  also, for example, 
from two recent conference proceedings, Manes [7] 
and B6hm [1]. If I tried to list names here, I would only 
leave some o u t - t h o s e  that have had contact with 
me know how much I appreciate their interest and 
contributions. 
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Some Perso~a~ Notes 

I was born h~ California and began my work in 
mathematical logic as an undergraduate at Berkeley in 
the early ] 950's. The primary hfflucnce was, of course, 
Alfred Tarski together with his many cnlleagues and 
students at the University of California. Among many 
other things. I learned recursive function theory from 
Raphael and,tulia Robinson, whom I want to thank for 
mm~erous insights. Also at the time through seltUstudy I 
found o u t  about tlne X-calculus of Curry and Church 
(which° literally~ gave me nightmares at first). Espe- 
cially important for my later ideas was the study of 
Tarski 's  semantics and his definition of truth for for- 
malized ~anguages, These concepts are still being hotly 
debated today in the philosophy of natural language, as 
you k~aow, t have tried to carry over the spirit of 
Tarski 's approach to algorithmic languages, which at 
least have the advantage of being reasonably well for- 
malized syntactically. Whether I have found the right 
denotations of terms as guided by the schemes of 
Strachey (anti workcd out by many hands) is what 
needs discussion. 1 am the first to say that not all 
problems are sob/ed just by giving denotations to some 
languages. Languages like (the very pure) k-calculus 
are well served, but many programming concepts are 
still not covered. 

My graduate work was completed in Princeton in 
/958 under the directiou of Alonzo Church, who also 
supervised Michael Rabin's thesis. Rabin and I met at 
that time, but it was during an U}M summer job in 1957 
that we did our joint work on automata tt~eory, lit was 
hardly carried out in a vacuum, since many people were 
working in the area; but we did manage to throw some 
basic ideas into sharp relief. At the time I was certainly 
thinking of a project of giving a mathematical definition 
of a machine, t feel now that the finite-state approach is 
only partially successftfl and without much in the way of 
practical implication. True, many physical machines 
can be modelled as finite-state devices; but the finite- 
hess is hardly the most important feature, and the 
automata point of view is often rather superficial. 

Two later developments made automata seem to me 
more interesting, at least mathematically: the Chomsky 
hierarchy and the connections with semigroups. From 
the algebraic point of view (to my taste at least) Ellen- 
berg, the Euclid of automata theory, in his books [5] 
has said pretty much the last word. I note too that he 
has avoided abstract category theory. Categories may 
lead to good things (cf. Manes [7]), but too early a use 
can only make things too difficult to understand. That 
is my personal opinion. 

In some ways the Chomsky hierarchy is in the end 
disappointing. Context-free languages are very impor- 
tant and everyone has to learn about them, but it is not 
at all clear to me what comes n e x t - i f  anything. There 
are so many other families of languages, but not much 
order has come out of the chaos. I do not think the last 
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word has been said here. It was not knowing Where to 
turn, and being displeased with what I thought was 
excessive complexity, that made me give up working in 
automata theory. I tried once in a certain way to con- 
nect automata and programming languages by suggest- 
ing a more systematic way of separating the machine 
from the program. Eilenberg heartily disliked tile idea, 
but I was glad to see the recent book by Clark and 
Cowell [2] where, at the suggestion of Peter Landin, 
the idea is carried out very nicely. It is not algebra, I 
admit, but it seems to me to be (elementary,  somethat  
theoretical) programming.  I would like to see the next 
step, which would fall somewhere in between Manna 
{8] and Milne-Straehey [9]. 

It was at Princeton that I had my first introduction 
to real m a c h i n e s -  the now atrnost prehistoric w)n Neu- 
mann machine. I have to thank Forman Acton for that. 
Old fashioned as it seems now, it was still real; and Hale 
Trotter  and I had great fun with it. How very sad I was 
indeed to see the totally dead corpse in the Smithsonian 
Museum with no indication at all what it was like when 
it was alive. 

From Princeton I went to the University of Chicago 
to teach in the Mathematics Depar tment  for two years. 
Though I met Bob Ashenhurst  and Nick Metropolis at 
that time, my stay was too short to learn from them; 
and as usual there is always too great a distance be- 
tween departments.  (Of course, since I am only writing 
about connections with computing,  I am not trying to 
explain my other activities in mathematics and logic.) 

From Chicago I went to Berkeley for three years. 
There I met many computer  people  through Flarry 
Huskey and Ren6 de Vogelaere,  the latter of whom 
introduced me to the details of Algol 60. There  was, 
however, no Computer  Science Depar tment  as such in 
Berkeley at that time. For personal reasons I decided 
soon to move to Stanford. Thus,  though I taught a 
course in Theory of Computat ion at Berkeley for one 
semester, my work did not amount  to anything. One 
thing I shall always regret about Berkeley and Comput-  
ing is that I never learned the details of the work of 
Dick and Emma Lehmer ,  because I very much admire 
the way they get results in number  theory by machine. 
Now that we have the Four-Color Problem solved by 
machine, we are going to see great activity in large- 
scale, special-purpose theorem proving. I am very sorry 
not to have any hand in it. 

Stanford had from the early 1960's one of the best 
Computer Science departments in the country, as 
everyone agrees. You  will wonder why I ever left. The 
answer may be that my appointment was a mixed one 
between the departments of  Philosophy and Mathe- 
matics. I suppose my personal difficulty is knowing 
where I should be and what I want to do. But personal 
failings aside, I had excellent contacts in Forsythe's 
remarkable department and very good relations with 
the graduates, and we had many lively courses and 
seminars. John McCarthy and Pat Suppes,  and people 
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from their groups, had much influence on me and my 
views of computing. In Logic, with my colleagues Sol 
Feferman and Georg Kreisel, we had a very active 
group. Among the many Ph.D. students in Logic, the 
work of Richard Platek had a few years later, when I 
saw how to use some of his ideas, much influence on 
m e, 

At this point ~ had a year's leave in Amsterdam 
which proved unexpectedly to be a turning point in my 
intellectual development. I shall not go into detail, 
since the story is complicated; but the academic year 
1968/69 was one of deep crisis for me, and it is still very 
painful for me to think back on it. As luck would have 
it, however, Pat Suppes had proposed my name for the 
IFIP Working Group 2.2 (now called Formal Descrip- 
tion of Programming Concepts). At that time Tom 
Steel was Chairman, and it was at the Vienna meeting 
that I first met Christopher Strachey. If the violence of 
the arguments in this group are any indication, I am 
really glad I was not involved with anything important 
like the Algol Committee. But I suppose fighting is 
therapeutic: it brings out the best and the worst in 
people. And in any case it is good to learn to defend 
oneself. Among the various combatants I liked the style 
and ideas of Strachey best, though I think he often 
overstated his case; but what he said convinced :me I 
should learn more. 

It was only at the end of my year in Amsterdam that 
I began to talk with Jaco de Bakker, and it was only 
through correspondence over that summer that our 
ideas took definite shape. The Vienna mM Group that I 
met through WG 2.2 influenced me at this stage also. 
In the meantime ] had decided to leave Stanford for the 
Princeton Philosophy Department; but since I was in 
Europe with my family, I requested an extra term's 
leave so I could visit Strachey in Oxford in the fall of 
1969. That term was one of feverish activity for me; 
indeed, for several days, I felt as though I had some 
kind of real brain fever. The collaboration with 
Strachey in those few weeks was one of the best experi- 
ences in my professional life. We were able to repeat it 
once more the next summer in Princeton, though at a 
different level of excitement. Sadly, by the time I came 
to Oxford permanently in 1972, we were both so in- 
volved in teaching and administrative duties that real 
collaboration was nearly impossible. Strachey also be- 
came very discouraged over the continuing lack of 
research funds and help in teaching, and he essentially 
withdrew himself to write his book with Milne. (It was a 
great effort and I do not think it did his health any 
good; how I wish he could have seen it published.) 

Returning to 1969, what I started to do was to show 
Strachey that he was all wrong and that he ought to do 
things in quite another way. He had originally had his 
attention drawn to the X-calculus by Roger Penrose and 
had developed a handy style of using this notation for 
functional abstraction in explaining programming con- 
cepts. It was a fot~mal device, however, and I tried to 
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argue that it had tie mathematical basis. I have told this 
story before, so to make it short, let me only say that in 
the first place I had actually convinced him by "supe- 
rior logic" to give up the type-free X-calculus. But then, 
as one consequence of my suggestions followed the 
other, I began to see that computable functions could 
be defined on a great variety of spaces. The real step 
was to see that function-spaces were good spaces, and I 
remember quite clearly that the logician Andrzej Mos- 
towski, who was also visiting Oxford at the time, simply 
did not believe that the kind of function spaces I de- 
fined had a constructive description. But when I saw 
they actually did, I began to suspect that the possibili- 
ties of using function spaces might just be more surpris- 
ing than we had supposed. Once the doubt about the 
enforced rigidity of logical types that I had tried to push 
onto Strachey was there, it was not long before I had 
found one of the spaces isomorphic with its own func- 
tion space, which provides a model of the "type--free" 
h-calculus. The rest of the story is in the literature. 

(An interesting sidelight on the X-calculus is the r61e 
of Alan Turing. He studied at Princeton with Church 
and connected computability with the (formal) X-calcu- 
lus around 11936/37. Illuminating details of how his 
work (and the further influence of h-calculus) was 
viewed by Steve Kteene can be found in Crossley [3]. 
(Of course Turing's later ideas about computers very 
much influenced Strachey, but this is not the time for a 
complete historical analysis.) Though 1 never met Tur- 
ing (he died in 1954), the second-hand connections 
through Church and Strachey and my present Oxford 
colleagues, Les Fox and Robin Gandy, are rather close, 
though by the time I was a graduate at Princeton, 
Church was no longer working on the X-calculus, and 
we never discussed his experiences with Turing.) 

It is very strange that my X-calculus models were not 
discovered earlier by someone else; but I am most 
encouraged that new kinds of models with new proper- 
ties are now being discovered, such as the "powerdo- 
mains" of Gordon Plotkin [10]. I am personally con- 
vinced that the field is well established, both on the 
theoretical and on the applied side. John Reynolds and 
Robert  Milne have independently introduced a new 
inductive method of proving equivalences, and the in- 
teresting work of Robin Milner on LCF and its proof 
techniques continues at Edinburgh. This direction of 
proving things about models was started off by David 
Park's theorem on relating the fixed-point operator  and 
the so-called paradoxical combinator of X-calculus, and 
it opened up a study of the infinitary, yet computable 
operators which continues now along many lines. An- 
other direction of work goes on in Novosibirsk under 
Yu.L. Ershov, and quite surprising connections with 
topological algebra have been pointed out to me by 
Karl H, Hofmann and his group. There is no space here 
even to begin to list the many contributors. 

In looking forward to the next few years, I am 
particularly happy to report at this meeting that Tony 
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H o a r e  has recent ly  accepted  the Ctlair of Computa t ion  
at Oxford ,  now made pe rmanen t  since St rachey ' s  pass- 
ing, This opens  up all sorts of new possibil i t ies for 
co l labora t ion ,  both with t~oare and with the many 
s tudents  he will a t t ract  after he takes up the post  next 
year.  And ,  as you know,  the practical aspects of use 
and design of compu te r  languages and of p rogramming  
methodo logy  will certainly be stressed at Oxford  (as 
Strachey did too,  t hasten tn add) ,  and this is all to the 
good;  but  there  is also excellent  hope for theoret ical  
invest igat ions.  

bleness is to be found in Scott  [12], but  of course  the 
s tructure s tudied there  is specia l .  P robab ly  it is best  
nei ther  to exclude or  include a ±;  and,  for  s impl ic i ty ,  i 
shall not ment ion  it fur ther  today . )  

Looking  now at ,% the domain  of  s equences ,  we 
shall employ  a sho r thand  no ta t ion  where  subscr ipts  

indicate the coord ina tes ;  thus,  

x - ( x , ) 7 = 0  

for a11x C ,~. Each term is such that  x ,  ~52 :~, because  ,~ 
-- . ~ .  7?chnical@, a "d i rec t  p r o d u c t "  of  s t ruc tures  is 
in tended ,  so we def ine c on ,~ by 

Some Sema~ttic Structures 

Turning now to technical  details,  [ should like to 
give a brief  indication of how my construction goes,  and 
how it is open to considerable  variat ion.  It will not be 
possible to argue here that these are the " r igh t"  ab- 
stractk:ms, and that is why it is a relief to have those 
references  rnc~tioned earl ier  so easily available.  

Perhaps  the quickest  indication of what I arn gett ing 
at is provided by two domains:  ;~, the domain of Boo- 
teat~ values, and .7 ..... :}£~, the domain of infinite se- 
quences  of Boolean values. The  first main point  is that  
we are going to accept the idea of partial functions 
represen ted  mathemat ica l ly  by giving the functions 
from lime to time parfia! values. As far as ;N goes the 
idea is very trivial: we write 

,~ :': {true, .fidse, ±} 

where L is an extra  e lement  called "the undef ined ."  In 
order  to keep L ira its place we impose a part ial  order ing  
f; <m the domabl  ;:~, where 

x c : y  i f f e i t he r  x = Z or x ....... y,  

for all x,  y c~.2 :~l. It will not rnean all that much here in 
,~, but we can read "g" as saying that the informat ion 
content  o f x  is contained in the information content  of  
y ,  The e lement  Z has, therefore ,  empty  informat ion 
content .  The scheme is i l lustrated in Figure 1. 

Fig. 1. The Boolean values. 

m~e fi, tse 

Jk 

(An aside: in many publ icat ions  I have advoca ted  
using lattices, which as part ia l  order ings  have a " t o p "  
e lement  T as well as a " b o t t o m "  e lement  .1.,, so that we 
can assert  ± ¢:x g T for all e lements  of the domain .  This 
suggestion has not  been well received for many reasons 
I cannot  go into here.  Some discussion of its reasona-  

x g y  iff x,, c:y~,, for  all n. 

Intuit ively,  a sequence  y is " b e t t e r "  in i n fo rma t ion  than 
a sequence  x iff some of the c o o r d i n a t e s  of x which 
were ° 'undef ined"  have passed  over  in to  "be ing  de- 
f ined"  when we go from x to y .  For  e x a m p l e ,  each of 
the following sequences  s tands  in the re la t ion  r- to the 
following ones:  

( 2 , 2 , 2 ,  Z . . . .  ), 
(true, Z, J_, Z, . . .), 
(true,.f?dse, ±, 2 ,  . . .), 
(true, Calse, true, ± . . . .  ). 

Clear ly  this list could be e x p a n d e d  inf ini te ly ,  and  there  
is also no need to t rea t  the coo rd ina t e s  in the  strict 
o rde r  n = 0, 1, 2 . . . .  Thus  the ~ re la t ion  on ,~ i s  far 
more  complex than the or iginal  c on 27/3. 

An  obvious d i f ference  be tween  ~ and ,9 ~ is tha t  ?~ is 
finite while 8 / h a s  inf intely many  e l emen t s .  In ,~, also, 
certain e lements  have infinite in jbrmat ion  content ,  
whereas  this is not  So in ~ .  H o w e v e r ,  we can employ  
the par t ia l  o rder ing  in J to expla in  abs t rac t ly  what  we 
mean by "fini te  a p p r o x i m a t i o n "  and " l im i t s . "  The  se- 
quences  listed above  are  f ini te  in Y because  they  have 
only finitely many coord ina tes  dis t inct  f rom .1,. Given 
any x C ,~ we can cut it down to a f ini te  e l e m e n t  by 
defining 

(x ] m ) , , =  ~x~,, if n < m ;  
[_k, if not.  

It is easy to see f rom our  def in i t ions  that  

x l m  ~x l  (m + 1) ~x, 

so that  the x I m are  "bu i ld ing  u p "  to a l imit ;  and ,  in 
fact, that l imit  is the  or iginal  x.  W e  write  this as 

x =  14 @Ira) ,  

where  IJ is the sup or l e a s t - u p p e r - b o u n d  o p e r a t i o n  in 
the par t ia l ly  o r d e r e d  set .5'L The  po in t  is tha t  59° has 
many  sups; and,  w h e n e v e r  we have e l e m e n t s  yU,~ 
/ "+~)  in ~ ( regardless  of  whe the r  they  are  f ini te  or 
not ) ,  we can def ine  the " l imi t "  z ,  where  

so 

z = LI y('~t 
I~l=O 
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(Hint: ask yourself what the coordinates of z will have 
to be.) We carmot rehash the details here, but ~ really 
is a topological space, and z really is a limit. Thus. 
though ,~ is infinitary, there is a good chance that we 
can let manipulations fall back on finitary operations 
and be abtc to discuss comptaable operations on c¢, 
and on more complex domains. 

Aside fron-i the sequence and partial-order structure 
orl J .  we can define many kinds of algebraic structure. 
That is why /£ is a good example. For instance, up to 
isomorphism the space satisfies 

where on the fight-hand side the usual binary direct 
product is intended. Abstractly, the domain ,50 x Y 
consists of all ordered pairs @, y) withx, y ~ ~ ,  where 
we define c on ~ x (f  by 

Cv', y) c @ '  y ' )  iffx c .r '  andy  qy ' .  

But for all practical purposes there is no harm in identi- 
fying @, y) with a sequence already in 50; indeed coor- 
dinatewisc we can define 

_ j'x/,., ifn = 2k; y). 
[Yk, ife~ 2k + 1. 

The above criterion for ~. between pairs will be verified, 
and we can say that ~ has a (bi-unique) pairing func- 
tion. 

The pairing function ( . ,  • ) on ,5 ° has many interest- 
ing properties,  in effect we have already noted that it is 
monotonic (intuitively: as you increase the information 
contents of x and y,  you increase the information con- 
tent of (x, y) . )  More importantly, ( . ,  .) is continuous in 
the following precise sense: 

(x,y)= LI 4~q-~ ,yq~x  
tt~-- ° 

which means that ( . , .  } behaves well under taking finite 
approximations. And this is only one example; the 
whole theory of monotone  and continuous functions is 
very important to this approach. 

Even with the small amount of structure we have 
put on ~£, a language suggests itself. For the sake of 
illustration, we concentrate on the two isomorphisms 
satisfied by ~ ;  namely, .Sf - ~J x ~ and S ° = ~ x ~ .  
The first identified S ~ as having to do with (infinite) 
sequences of Boolean values: while the second reminds 
us of the above discussion of the pairing function. In 
Figure 2 we set down a quick BNF definition of a 
language with two kinds of expressions: Boolean (the 
fi's) and sequential (the o-'s). 
Fig. 2. A brief language. 

,8 ::= true I false ] head ~r 

ff fl tthen cr' eJse or" 
even o- [ odd c r  merge ~r'rr" 

This language is very brief indeed: no variables, no 
declarations, no assignments, only a miniature selec- 
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tion of constant terms. Note that the notation chosen 
was meant to make the meanings of these expressions 
obvious. Thus, if cr denotes a sequence x, then head <r 
has got to denote the first term x0 of the sequence x. As 
x0 ~ 28 andx ~E ,'T, we are keeping our types straight. 

More precisely, for each expression we can define 
its (constant) value ~[. ~ ; so that [ [ f i~  ff Z.8 for 
Boolean expressions ,8, and ~ <r ~ ~ Yf for sequential 
expressions. Since there are ten clauses in the BNF 
language definition, we would have to set down ten 
equations to completely specify the semantics of this 
example; we shall content ourselves with selected equa- 
tions here. To carry on with the remark in the last 
paragraph: 

On the other side, the expression /3* creates an infinite 
sequence of Boolean values: 

(This notation, though rough, is clear.) In the same 
vein: 

while we have 

Further along: 

[[ o -  : 

and 

m e r g e  cr'c/' ~_ = ( ~r~'  ~ ,  ~ o-" ~) .  

These should be enough to give the idea. tt should also 
be clear that what we have is really only a selection, 
because ~ satisfies many more isomorphisms (e.g., S ~ 
= ~ x 50 x .90, and there are many,  many more ways 
of tearing apart and recombining sequences of Boolean 
va lues -a l l  in quite computable ways. 

T h e  F u n c t i o n  S p a c e  

It should not be concluded that the previous section 
contains the whole of my idea: this would leave us on 
the elementary level of program schemes (e.g. van 
Emden-Kowalski  [6] or Manna [8] (last chapter)).  
What some people call "Fixpoint Semantics" (I myself 
do not like the abbreviated word "fixpoint") is only a 
first chapter. The second chapter already includes pro- 
cedures that take procedures as a rgumen t s -h ighe r -  
type p r o c e d u r e s - a n d  we are well beyond program 
schemes. True, fixed-point techniques can be applied 
to these higher-type procedures, but that is not the only 
thing to say in their favor. The semantic structure 
needed to make this definite is the function space. I 

Communications September i977 
of Volume 20 
the ACM Number 9 



have tried to stress this from the start in 1969, but 
many people have not understood me well enough.  

Suppose 2," arm 5"  are two domains of the kind we 
have been discussing (say, 2,9 or ;73 x ;~:~ or .50 or some- 
thing worse). By {fig' -~ ( / ' ]  let us urlderstand the 
domain of all monotone  and continuous func t ions j '  
mappb~g 2/' into ~Y"'. This is what I mean by a fiu.zctioez 
,vpace. it is not all that difficult mathematically, but it is 
not all that obvious either that [2/;' --* ~"] is again a 
domai~l " o f  the same kind," though adnlittedly of a 
more complicated structure. I cannot prove it here, but 
at least I can define the c relation on the function space: 

j r:::g ifff(,r) cg(,r) for allx ~Z ~Y', 

Treating functiorls as abstract objects is re)thing new; 
what has to be checked is that they are also quite 
reasonable oSjecLs' o f  cornpumfion. The relation :~ on 
[Sx" --* 2j;"] is the first step in checking this, and it leads 
to a wall-behaved notion of a finite approximation to a 
function. (Sorry! there is no time to be more precise 
here0  And when that is seen, the way is open to 
iteradon of function spaces; as in [[2'---* 2"]  -> ri, f,,]. 
This is not as crazy as it might seern at first, since our 
theory identifiesf(.v) as a computable binary function of 
t, ariable j and variable x. Thus,  as an operation,  it can 
be seen as an e@mem of a function space: 

I l l : i / '  ..... o"1 x ~ " l  ,-* u " l .  

This is only the start of a theory of these operators (or 
combmators', as Curry and Church call them). 

Swallowing all this, let us attempt an infinite itera- 
tior~ of function spaces beginning with .50, We define (#0 
= ,!/' and ,%, ~ ..... [<~z: __> ,50]. ~l'hus ,~]~ = [,9O--> ,9O] and 

.'~', = [[[[,~e-.~ ,9o]--..5o] ~ ,9ol, 

You just have to believe me that this is all highly 
constructive (because we employ only the continuous 
functions). 

It is fairly clear that there is a natural sense in which 
this is eurm~lative. In the first place 5° is "contained in" 
[,9O -.> .50] as a subspace: identify each x ~ 5° with tile 
corresponding cor~stant function in [(f--~ ~ ] .  Clearly by 
our  definiti(ms this is an order-preserving correspond- 
ence. Also each j" ~ [J~---, Y'] is (crudely) approximated 
by a constant,  namelyf(J_) (this is the "best"  element 
all the valuesf(x)) .  This relationship of  subspace and 
approximation between spaces will be denoted by 

Pushing higher we can say 

.[,50 ~ ~ ' ]  < [ [Se  ~ ,50] ~ .5°], 

but now for a diffkrent reason,  Once we fix the reason 
whY ~ q [,5O--~ ~] ,  we have to respect the function 
space structure of the higher ?Y,,. In the special case, 
s u p p o s e f  ¢ [~--> ~ ] ,  We want to in jec t f  into the next 
space, so call it i(/) ¢ [,9 ° --~ 5°] --~ ~ .  I fg  is any element 
in [ ~ - +  ~'] we are being required to define i(f)(g) ~ ~ .  
Now, since g ¢ [5°--> 5°], we have the original projec- 
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Fig. 3. The fir£chain ofisomorphisms. 

; ~  x . : ; t  :: [.:~, -~ s/ l  x [ y . , . . - ,  ~ ]  
[.>, -, .'/, x ,7'] 

: :  .~; .~ 

Fig. 4. The second chain ofisomorphisms. 

= [[:~:,~, × .%]  - ,  .Yl 

= 0%~ -" .~] 

tiorz backwards j(g) = g ( t )  ~ ..5 °. So, as this is the best 
approximation to g we can get in if ,  we are stuck with 
defining 

i(f)(g) = EJ(g)). 

This gives the next map i: ~ ,  --> ~ .  To  define the 
corresponding project ion j :  ~z --> ~1, we argue in a 
similar way and define 

j(@(x) = 6 ( i ¢ ) ) ,  

where we have cb C [ ~  --> ~ ]  --> ,5 °, and i(x) C [ ~  --> 5°] 
is the constant function with value x.  With this progres- 
sion in mind there is no trouble in using an exactly 
similar plan ill def in ing/ :  5'~ -~ ¢7a and j :  ~s  -* ,5;~. And  
so on,  giving the exact sense to the cumulation: 

.3%< ~ , <  a ~ <  . . .  < &  < ~,,+~ < . . . .  

Having all this, it would be a pity not  to pass to the 
limit (this time with spaces),  and this is just what  I want 
you to accept.  What  is obtained by decreeing that  there 
is a space 

Since the separate stages interact  thus: 

.£,+.~ = [ &  + ~ ] ,  

it is not so queer to guess that 

sv~ = [ e ~  ~ s e t  

holds (at least up to isomorphism).  It does ,  but I can 
only indicate the bare bones of the reason (and reason- 
ableness) of  this isomorphism. In the first place the 
separate spaces ~, ,  have been placed one  inside an- 
other, which not only makes  a tower of spaces but also 
respects the combination¢~x) as an algebraic operation 
of two variables, o ~  in a precise sense is the complet ion 
of the union of the ~,~; 'that is within these spaces we 
can think of towers of functions each approximating the 
next (by the use of  the i and. /mappings) ,  so that in .~o 
these towers are given limits. If the towers are trun- 
cated, then we can argue that each space .~,, <q o~oo. 

Now why the isomorphism on . ~ ?  Take a function 
(continuous!) in [ ~  --> ~ ] .  By its very continuity it will 
be determined by what it does to the finite levels ~,~. 
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That is, it will have better and better approximations in 
[2Y,-~ .qf] = ,~, ~; thus, the approximations "live" in 
the finite levels of ~.~. Their limit ought to just give us 
back the function [ ~ ,  -> .~] we started witl~. In the 
same way ar~y element in ~ can be regarded as a limit 
of approximate functions in the spaces [3;, --~ cf]. 
Admittedly there are details to check; but, in the limit, 
there is no real dif%rence between ~ and [ ~  --> ~] :  
the infinite level of higher type functions is its own 
function space, (As always: this is a ,consequence of 
continuity.) 

Much structure is lurking under the surface here; in 
fact more than I thought at first. In Figure 3, I illustrate 
a chain of isomorphisms that shows that ~ gets much of 
the character of ~ with which we were already familiar. 
The reasons why these are valid are as follows. First, 
we treat . ~  as a function space. Nowpairs offimctions 
can be isomorphically put into correspondence with 
functions taking on pairs o f  values. But ~ x ~ = J as 
we already know. The final step just puts functions on 
g7,~ back to elements of g7~. 

Using the isomorphism of Figure 3, we can gain the 
further result illustrated in Figure 4. The reasons are 
fairly clear. Take a function from ~o to ~ .  The values 
of this function can be construed as functions. But 
consider that a function whose values are functions is 
just (up to isomorphism of spaces) a function o f  two 
arguments. As we have seen in Figure 3, 2Y~ x ~ = 
~ , ,  so we obtain the final simplification (up to iso- 
morphism).  

What we have done is to sketch why ~ ,  the space 
of functions of infinite type, is a model of the X-calcu- 
lus. The X-calculus is a language (not illustrated here), 
where every term can be regarded as denoting both an 
argument  (or value) and a function at the same time. 
The formal details are pretty simple, but the semantical 
details are what we have been looking at: every ele- 
ment  of the space ~~ can be taken at the same time as 
being an element of the space [ . ~  ~ ~ ] ;  thus, . ~  
provides a model,  but it is just one of many.  

Without being able to be explicit, a denotational (or 
mathematical) semantics was outlined for a pure lan-. 
gtmge of procedures (also pairs and all the other stuff in 
Figure 2). ha the references cited on real programming 
languages, all the other features (of assignments, se- 
quencing, declarations, etc., etc.) are added. What has 
been established in these references is that the method 
of semantical definition does in fact work. I hope you 
will took into it. 
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