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This is the second Turing Award lecture on Computational 
Complexity. The first was given by Michael Rabin in 19767 In 
reading Rabin's excellent article [62] now, one of the things 
that strikes me is how much activity there has been in the 
field since. In this brief overview I want to mention what to 
me are the most important and interesting results since the 
subiect began in about 1969. In such a large field the choice of 
topics is inevitably somewhat personal; however, I hope to 
include papers which, by any standards, are fundamental. 

1. EARLY PAPERS 
The prehistory of tbe subject goes back, appropriately, to Alan 
Turing. In his 1937 paper, On computable numbers with an 
application to the Entscheidungs problem [85], Turing intro- 
duced his famous Turing machine, which provided the most 
convincing formalization (up to that time) of the notion of an 
effectively (or algorithmically) computable function. Once this 
notion was pinned down precisely, impossibility proofs for 
computers were ~)ssible. In the same paper Turing proved 
that no algorithm (i.e., Turing machine) could, upon being 
given an arbitrary formula of the predicate calculus, decide, 
in a finite number of steps, whether that formula was satisfia- 
ble. 

After the theory explaining which problems Can and can- 
not be solved by computer was well developed, it was natural 
to ask about the relative computational difficulty of computa- 
ble functions. This is the subject matter of computarional 
complexity. Rabin [59, 60] was one of the first persons (1t60) 
to address this general question explicitly: what does it mean 
to say that f is more diffficult to compute than g? Rabin 
suggested an axiomatic framework that provided the basis for 
the abstract complexity theory developed by Blum [6] and 
others. 

A second early (1965) influential paper was On the compu- 
tational complexity of algorithms by J. Hartmanis and R. E. 
Stearns [37]? This paper was widely read and gave the field 
its rifle. The important notion of complexity measure defined 
by the computation time on multitape Turing machines was 
introduced, and hierarchy theorems were proved. The paper 
also posed an intriguing question that is still open today, Is 

* Michael Rabin and Dana Scott shared the Turing Award in 1976. 
a See Hartmanis [36] for some interesting remirfiscences. 
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any irrationa] algebraic number (such as ~/2) computable in 
real time, that is, is there a Turing nmchir~e that prints out the 
decinml expausion of the numher at the rote of one digit ~×~r 
100 steps [brevet. 

A third fbtmding paper {1965) was The intrinsic computa- 
tiorml dij~iculty offunctiens by Alan Cobharn ['15]. Cobham 
emphasized the word "intrip~ic," that is, he was interested in 
a machine-independent theory. He asked whether multiplica- 
tiou is harder than additiom and believed that the question 
could not be answered until the theory was properly {level-. 
oped. Cobham also defined and characterized the important 
class of tractions he called :/? those t:unctions on the rmtural 
numbers computable in time hounded by a polynornial in the 
decimal length of the input 

Three other papers that influenced the above authors as 
well as other complexity workers (including myself) are 
Yamada [9I. ], Bennett [4], and Ritchie [66]. It is interesting to 
note that Rabin, Stearns, Bennett and Ritchie were all stu- 
dents at Princeton at roughly the same time. 

2, EARLY ~SSU~Lq AND CONCEPTS 
Several of the early authors were concerned with the ques- 
tion: What is the righ.t complexity measure? Most mentioned 
computation time or space as obvious choices, but were not 
corn,%ced that these were the only or the right ones. For 
example, Cobham [15] suggested " . . .  some measure related to 
the physical rio{ion of work [may] lead to the most satisfac- 
~o~' analysis." Rabin [60] introduced axioms which a com- 
plemty measure should satLsfy. With the perspective of 20 
years experience, I now think it is clear that time and space--  
especially t ime--are  certaipJy among the most important 
complexity measures. It seems that the first figure of merit 
given to evaluate the efficiency of an algorithm is its rurming 
time. However, more recently it is becoming dear  that paral- 
lel time and hardware size are important complexity meas- 
ures too (see Section 6). 

Another important complexity measure that goes back in 
some form at least to Shmmon [74] (1949) is Boolean circuit 
(or combinational) complexity. Here it is convenient to as- 
sume that the function f in question takes finite bit strings 
into finite bit strings, and the complexity C (n) o f f  is the s/ze 
of the smallest Boolean drcuit  that computes ~ for all inputs of 
length n. This very natural measure is closely related to com- 
putation time (see [57@ [57b], [68b]), and has a well devel- 
oped theory in its own right (see Savage [68@. 

Another question raised by Cobham [15] is what consti- 
tutes a "step" in a computation. This amounts to asking what 
ks the right computer model for measuring the computation 
time of an algorithm. Multi{ape Turing machines are com- 
monly used in the literature, but they have artificial restric- 
tions from the point of view of efficient implementation of 
atgorithnr~s. For example, there is no compelling reason why 
the storage media should be linear tapes. Why not planar 
arrays or trees? Why not allow a random access memory? 

In fact, quite a few computer models have been proposed 
since 1960. Since real computers have random access merno* 
.des, it seems natural to allow these in the model. But iust 
how to do this becomes a tricky question. If the machine can 
store integers in one step some bound must be placed on their 
size. (If the number 2 is squared 10'0 times the result has 2 ~m 
bits, which could not he stored in all the world's existing 
storage rnedia.) I proposed charged RAM's in [1.9], in which a 
cost (number of steps) of about ]ogl xl is charged every time a 
number x is stored or retrieved, This works but is not com~ 
pletely convincing, A more popular random access model is 
the one used by Aho, Hotx:roff, and Ullman in [3], in which 

each operation b~volving an integer has nrdt cost bul inter- 
gers are not allowed to become um'easonably Inrf.:e {f~)r exarm 
ple. their magnitude, might be bom~ded by :..;ome fixed [×)ly- 
hernial in the size of the. input). Pn:~batJv t}m m,.~sl mathemat. 
ically satisl)ing model is ~Q:h6nhage's storage modification 
machine [69], which can be view~:d either as a Turi~g ma- 
chine that builds its own storage structure or as a unit cost 
RAM that can only copy, add or' substract one, or store or 
retrieve in one step, Sch~nhage's machine is a slight generali- 
zation of the Kolrnogon)v-{ Jspenski machine proposed muc, h 
earlier [46] (1958], and seems to me to represent the most 
general machine that could possibly be construed as doing a 
bounded amount of work in one step. The trouble is that it 
probably is a little too powerful. (See Section 3 under "large 
nurnber mutiplication.") 

Returning to Cobham's question "what is a step," I think 
what has become clear in the last 20 years is that there is no 
single clear answer. Fortunately, the competing computer 
models are net wildly different in computation time. tn gen- 
eral, each can simulate any other by at most squaring the 
computation time {some of the first arguments to this effbct 
are in [37]). Among the leading random access models, there 
is only a factor of log computation time in question. 

This leads to the final important concept developed by 
1965--the identification of the class of problems solvable in 
time bounded by a txJynomial in the length of the input. The 
distinction between polynomial time and exponential time 
algorithms was made as early as 1953 by yon Neumann [90]. 
However, the class was not defined formally and studied until 
Cobham [15] introduced the c b ~  .U'of functions in 1964 (see 
Section 1). Cobham pointed out that the class was well de- 
fined, independent of which computer model was chosen, 
and gave it a characterization in the spirit of re{ursine func- 
tion theory. The idea that polynomial time computability 
roughly corresponds to tractability was first expressed in print 
by Edmonds [27], who called polynomial time algorithms 
"good atgorithins." The now standard notation P tbr the class 
of polynomial time recognizable sets of strings was introduced 
later bY Karp [42]. 

The identification of P with the tractable (or feasible) prob- 
lems has been generally accepted in the field since the early 
1970's. It is not immediately obvious why this should be true, 
since an algorithm whose running time is the polynomial n ~ 
is surely not feasible, and conversely, one whose running 
time is the exponential 2 '~~°  is feasible in practice. It seems 
to be an empirical fact, however, that naturally arising p m b  
lerrts do not have optimal algorithms with such rurming 
times? The most notable practical algorithm that has an expo- 
nential worst case running tJirne is the simplex algorithm fbr 
linear programming. Smale [75, 76] attempts to explain this 
by showing that, in some sense, the average running time is 
fast, but it ks also important to note that Khachian [43] 
showed that linear programming is in P using another algo- 
rithm. Thus, our general thesis, that P equals the feasible 
problems, ks not violated. 

3. UPPER BOUNDS ON I~ME 
A good part of computer sdence research consists of' designing 
and analyzing enormotks numbers of efficient algorithms. The 
important algorithms (from the point of view of computational 
complexity) must be special in some way; they generally sup- 
ply a surprisingly fast way of solving a simple or important 
problem. Below I list some of the more interesting ones in- 
vented since 19~). (As an aside, it is interesting to speculate 
on what are the all time most important algorithms. Surely 

z See [31], pp. ~'P,9 fbr a discussion o f  this, 
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the arid}merit ot}eraiioas +, - ,  % and : on di:cimat nurnbem 
are basic. Afle.r !hat. l suf,~gest fast sorting and searching, (;aus- 
sian diminatkm, ~}m Ench(ban algorithm, and d~e s:bnp/ex 
algorithra as ,:andidatus.} 

Tlm parameter ~l r~M~.; to fl~e size of the input, and the 
time bounds arc lhe wor?¢/cas~ tinm bom~ds and apply to a 
multitape Turing machine ((}r airy reasonable random access 
machirm) (:xc{:,pt where ~}oted. 

(1) The Fas~ Fourier Tra~sfbrm {23 I, requiring 
O(rflogn) arithmeti(: ufmra~i(ms, is one of the most used 
algorithms in sci{,~I~dfi{: (:{}mI:)utin{~ 

{2) l~<ge number  rrmltiplit~tion. The elementary 
school method requirus ()M z) bit of;rations to multiply 
two n digi] uumt)ers, In 19{52 Karatsuha and Ofman [41] 
published a nmd~od requMng only (T)(n"~{ 9 steps, 
Shortly after that T{×m} [84] showed how to (×instruct 
Boolean circuits of size O(r/+'] for arbitrarily small ~ > 0 
in order to carry (:mi the mutipl.icatJon. I was a graduate 
student at Harvard at lhe time, and iaspired by Coh- 
ham's question %; rnutiplication harder than addition?" 
I was naively trying to prove that rnultiplk.~atkm re- 
quires t2(n z} sk.T~s on a multitape Turing machine. 
Toom's paper caused me (:~}nskterable surprise. With 
the help of Stal Aanderaa 1122], I was reduced to show- 
ing that rnultipli{a]tion requires ti{nlc~]/{loglogn) ~) stetxs 
using an "on-line" T'uring machine, ~ I also pointed out 
in my thesis that Toom's method {~m be adapted to 
multitape Turing machines in order to multiply in 
O(n ~+') stein< someihing that t am sure came as no 
sin?rise to T{x)m. 

The currently fixstest asymptotic running time on a 
multitape Turing ma.chine ff}r number muttiplickqtion is 
O(nlogn loglo~l}, and was devised hy Sch6nhage and 
Strassen [701 (t97t) using the fast Fourier Transfomn. 
However, ~:h6nhage [69] recently showed hy a compli- 
cated argument that his storage modification machines 
[see Section 2) can multiply in time O(n)(linear time!). 
We are forced to conclude that either multiplication is 
easier dmn we thought or that Sch6nhage's machines 
cheat. 

{3) Matrix mullip|icatiom The obvious method re- 
quires nZ{2n-1) arithmetic operations to multiply two n 
x n matrices, and attempts were made to prove the 
method optimal in the 1950's and 19{~Ys. There was 
smprise when Strassen [81] {1969) published his 
method requiring only 4.7~ zm operations. Considerable 
work has been devoted to reducing the exponent of 
2£1, and currently the best time known is O(n z4~) 
operations, due to Coppersmith and Wino~'ad [24]. 
There is still plenty of r~x~rn for progress, since the best 
known lower bound is 2n2..1 (see [13]). 

(4) Maximum matchings in Sen.oral undirected 
graphs, This was perhaps the first problem explicitly 
shown to be in P whose memberslhip in P requires a 
difflcult algorithm. Edmonds' influential paper [27] gave 

time at ( } r i thm se~Z; q2;S{ cti{[iri 2 He a lso  * - J:~iuti d (}tit that g ( . . . , ,  . . . . . . .  1 .  ,0 ~ . ~  
the simple ~iotion of augme[~ting path, which sUNces 
for the bi[:~rtite case, does not work fbr general undi: 
rected graphs. 

( ) Re'c~gnRmn ~f prime ~lu:m[~e:rm The ma}or quem 
tion here is whether this problem is in P, In other 
words, is there an a/g:~rithn~ that always tells us 

. h~:; tower }:~ t nd  has }men s/igh(ly {m]m:~v{~l. ~ m  [58] and [{T4]. 

w}mther an arbitrary n<]i~t input ioteger is prime, and 
halts in a number of ste>s bounded hy a fixed g×)ly.- 
[a)mJaJ Jn n? (;ary Mi l ler [53] {1976) 
showed that there is such an algorithm, but its val idity 
depends on the extended Riemann hypothesis. 5kJovav 
and St rassen [27] devised a }2~st Monte Carlo alg~}rithrr~ 
{see Section 5) fbr prime re~kog/fition, but if the input 
numher is com[×~site there is 
a small chance the aJ~)rithm will mistakenly say it is 
prime. The best provable deterministic algarithm 
known is due to Adleman, Pomerance, and Rumety [2] 
and runs in tirne n ~'~'#'e/'l, which ks slightly worse dmn 
polynomial. A w~riation of this due to H. Cohen and H. 
W. I,erxstra Jr, [17] can r~outinely handle numbers up to 
100 decimal digiis in approximately 45 secmnds. 

Recently three important problems have been shown 
to be in the class P. The first is linear progu'amming, 
shown by Khachian [43] in t979 (see [55] fbr an exfx)si- 
tion). The second is deterrnining whether two graphs of 
degree at most d are isomorphic, shown by Luks [50] in 
1980. {TI'he algorithm ks polynomial in the number of 
vertices .fff)r fixed d, but exponential in d.) The third is 
factoring polynomials with rational coefficients. This 
was shown for polynomials in one variable by t,enstra, 
Lertstra, and txwasz [4811 in 1982. It ~ n  be generalized 
to prolynom.iaks in any fixed numbor of variables as 
shown by Kaltofen's result I39 I, [40]. 

4o LOWER BOUNDS 
The real challenge in complexity theory, and the probtern 
that sets the theory apart from the analysis of algorithms, is 
prmdng lower bounds on the complexity of specific problems. 
There is something very satisfying in proving that a yes-no 
problem cannot be solved in n, or n ~, or 2" steps, no matter 
what algorithm is used. There have been some important 
successes in proving lower bounds, but the open questiop~ are 
even more important and somewhat frustrating. 

All important lower bounds on computation time or space 
are based on "diagonal argumentts." Diagonal arguments were 
used by Turing and his contempories to prove certain pro[> 
lems are not algorithmically solvable. They were also used 
prior to t 960 to define hierarchies of' computable 0-1 func- 
tim~. s in 1960, Rabin [60] proved that for any reasonable 
complexity measure such as computation time or space 
(memory), sufficiently increasing the altowed time or space 
etc. always allows more 0.1 functions to be computed. About 
the same time, Ritchie in his thesis I65] defined a specific 
hierarchy of functions (which he showed is nontrivaal for 0.1 
functions) in terms of the amount of space allowed. A little 
later Rabin's result was amplified in detaft for time on multi- 
tape Turing machines by Hartmaus and Stearns [37], and fbr 
space by Stear~ts. Hartnmnds, and Lewis [78], 

4.1 Natural Decidable Problems Proved Infeasible 
The hierarchy results mentioned above gave lower boun.ds on 
the time and space needed to compute specific functions, bm 
all such functions seemed to be., "'contrived/' For example, it is 
easy to see that the fhnction fix,y) which gives the first digit 
of the output of machine x on input y after (Ixl+}.y]) z steps 
c.armot be computed in time {{×}+1Yl ~% It was not until 1972. 
when Albert Meyer and tarry  Skx;kmeyer [52 proved that 
the equivalence problem ff~r re~gflar expressim~s with squar- 
ing re(tuires exl~Kmentiai si~me and. therefore, exponential 
time. thai a nonirMal lower bound fbr general models of 
<xmaputation on a '  natural" problem was found {naturN m 

~'~e. for e x a m p l e  (;mz{:~orczv~ 1351. 
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the , ::31.,{ q,~ ~, of b~ i:I£ i:3ter:~sti::g, and: rio: a[~4:{ co:::pud::g tart:- 
chin,s). Shorth' after that ),J:yer {51] fim:id a very st::n:g 
{owe:" ho:i::d :9:3 the fit:re rcquhed {e dl h:ru:h:e {h{: truth <){ 
:b:'mulas h: a co:lab: l}3r:::al d:×:hlabb :h{"~?:v :?,.filed NXSL% 
{weak mo1:adi<: se<x)::do{:rder thv¢?rv n! su: : :><~):']. }{c pr:n e:l 
that any ('on:put{ r w}3ose runnl:b: time was hou:3ded by a 
fixed ::an:bet :if ex:×me3:dals (z: 2:% 2:'% etc.) (euld x?t 
1::orr{'ctly decide WSIS. Mover's Ph.D. student. S~<x:k3:3eye:' 
v<:nt on to ca]<:ulate {7:]] that ::31",' IkxJea:: ch'3::fit @:i::k 
computer: that <xx'rect:)de{:i&~s 1he I:13{}: :)i an arbitrary 
%SIS formula of :e::g~h 6!6 sv:3J×Js m11s~ h:~::'. :nor:' {}I::3: 
10:::: gates. The number 10 :'::~ was : hose:1 te he tile n:i33:ber {}( 
pmte31s th,3~ c~mld fit i3:: the kn(rw:i u:3iver>1. ':'::is is a wiry 
11on~ inch38 in:f~:.::sff: ilit:,' p:xx:ff! 

Sin:re Meyer :331:i St{x:km:~yer the:~ haze bee:: i:: laq4v :::::33- 
her d low~r bounds o:I the conIp{exib of decidabh~ fbr::3al 
th{~>ries (see [29] 1133:1 {~@] fbr su::Imaries]. ()::u of the :31os~ 
interesting is a doubiv, ex:×mential time :eB er hound <):: the 
time required to decide P:'esburg-r aAthmedc 8he q:eory of 
the natural 33umbe~ ::3::19:::' addition) by Fischer and Rabin 
[30]. This is not fh:" lioon: the best known tb31e up:mr hound 
ibr this theory, which :is tripJy ex~×):lential {54]. ':'}3:> best 
space upp.~r [x)u::d is d:)uhly exfx::,:le:ltiat {29]. 

[::).::spite {he above successes, the record i~)r proving lower 
[xxinds :1:1 proble3ns of smaller {:c, nlplexity is apv.illi33g, h: 
fact there is no no::linear time k)wer hou31d known {93: a 
ge::eral p:!r:x:~? co3nputatio:: :u(xlel Ibr any natural proble:31 
it{ XP (See s::tkx: 4.4), in ~x:rtir:ular, Ibr any of @e 300 pr~)b- 
k~:ns listed in {::I ]. Of course, one can prove hy diapnal 
arguments :he existence of' pK~blems i33 NP requiring time n ~ 
for a:ly fixed k. :~3 the case of' space lower :x)unds. however. 
we do not even know how to prove the existence of NP 
problems not a?Ivah]e in space ()(!olm) on an off-line Turi:lg 
machine {s>:~ Sk<:tion 4.3). Th.is is despite the f~tct that the best 
known sDace upf×}r [x)l.lnds in na t ty  natural {x:~ss are e£sen- 
dally linear in n. 

4.2 Structu~{ Lower Bo~n&s 
Although we have had little success in proving intel~sting 
lower bounds fbr concrete problems or: general computer 
mo~qels, we do have in:eros:in 8 restits fbr "structured" 
m<ieIs. The ~erm "structured" was in:re<lucent by Borodin {9] 
to refer to computers restricted to ce31ain oFeratioPs app:'opri- 
ate to the problem at hand. A simple example of thLs is the 
gmblem of sorting n numbens, One can prove {see {44]) with- 
()tit much difficulty that this requires at te~:t nk@n eompad- 
sorts, provided that the only ot>~ration the computer is aJ- 
bwed  te do with the if:puts is to comp:re them in fruits. This 
lower [x~urid says nothing about Turing machines or i:kx)iean 
ci:v:uits bui i~ }1as beer: extended to unit  c~:~t r~mdom access 
machines, provided division is di.m]l ~)v{:,d. 

A :mco::d and very e]ef~,mt struc:~ :r~i bwer  bound, due to 
Stra.¢sen {82] {1973), states that ~xJyrlorrfla~ i:':terFx?tation, :hat 
is., finding the ec~ffficienb of the fxtynomial of degree n-t: that 
fxmses throu~~ n ~ven fxints, r{~tl.;3ire~ t~(nh?@q) m:lltipliG> 
{io:"~ pmvkted oMy a.dthmetic oD.<raticms are allowed. Part o:f 
:he :nte,r~;t he:~e is that Strassen% od~nal  proof de:~mds on 
}Asrz£)ut's theorem, a deep :result in aigebra[c geome~w, Very 
r~;ently, Barn" and S~rassxm [83] have extended the lower 
[x}m:d to show that even the middb (xx~ffi<::ien~ of {he interfx).- 
iating ixJynomial thKa1~ n :f×Jnts peqalr~ 9~rtk:@~O rrmttipti.- 
(x~t:io~/~s ~o {x~mpute, 

Pro1 of the af:3~.)~a] of all of these str%~{:h:i-~d results b that 
[he bvcer [:£xm<ts are {21o,'~;~ {o the ' P ..... b,:,,>~ known upD-¢ [~/unds ~ 
and the :best known al~:;rithn3s {:~m b~ i~:' :p]¢m~,n ed on the 

:dnichn'ed m{~:ll {s l{} whh:h lht~ h;w~r b<):n:d>: d:piy. 
lh;d r::di,, ~>rt which is :.o:::~ ~ime>: sMd io{:: ]}::e::: t 
I{:a]]V req:in:s :d h:as~ nbPj: sbt:>:, i~ I>::I: ;mr ::n~e~: ~ia 
:::::uh~ n-, have e::{)::gl: {]i rib: :+{) {}:;:~ 1he>, :::i (::::~ be d 

4J~ Time Sf~ace }%~hH:{ lx,%~,:er }bands 
,'~dl(){h{'q" Wi:V :I~,)IuHI ~}1~ i I ! t I ~ d ; < ~ ( !  I:i !)roviN;', ~i:!1{~ ~{II( 
Rower txmnds h.; h) prov{ time h)wer }>,)urals under t}: 
sumpfion ~l stoat] space, t ohha:i1 116] proved ~he firs 
result h~ 19ti6, wheu he showed llla{ {he dine space / 
tier re cog:fixing N digit f~erJi>c{ v]:: u'es <)H ~m *?fftLlhm" 
machi:m :mist be i~(n"}. (The same is h'ue ~ff ~>~-ffmbo 
dnm:es.) }b re  @e inpu{ is wriHe>, o:1 u two way read 
h p m  s~:~< and flu~ spac~ used is by {{eihfilio:l i]m' ml 
v~uares s(a:med by fhe work {a~>:s availabb ~{~ the > 
machine. Thus, if, fi:r e x a m t ; k  lhe space is res~d{:ted 
() log%){s.~ hich is more than suffh i n/U. fl:{m 'du~ dlm 

The weakne~<~ in (bbhan': 's  result is lha~ although t 
Ibm Turi~bl machine m(xlel is a c e  ~so:lahle ~me {br rm 
(x:mputadnn ~Mle or S[)ac~: sep41ra{ely, i~ is ~(~: restrid 
wh(H time and stxme are {:1H~sk]e[ed togdher. }:or ex~ 
tim paiind~)/uus ~m ohvkmsb be reco£nized in 2n s~: 
constant space if two heads are allowed to scan the i:t 
simlfltmeeusly. [~am ~lin and f[ 10] twrtiaily fortified t 
weakneas when we proved lhal :~vth:g n J::Iegers hi { 
range o:le t() n i~ r{×:]uh'es a thne -s trace pr:x]u(:t o[' 9{no/ 
I 'he pKxd applies to ,:my "genera] sequenlia] machhle 
it:dudes off-/i:H~ Turing r~aa::hines wish m:a>y input h{ 
even random acce&~ to @e input tafx~, h is unfbrklrmt{ 
crudal l(} our pr,x:ff @at sorting n:qtfircs many output 
and i'{ remains an interesting oiM~n question whdher  a 
k)wer [~:)und can be made to apply to a sel recoG::idor 
bm, such as re: x~f:f1:iTii ::g whether at] :: inpul nunlhem 
distinct. (Our bwer bound o:: .~x}11ing has re(e:itly bee 
slightly impPeved h: [64],) 

4.4 NP43:m:pbb.m~s 
The t}H.x)ry of NP-campletene~ is surely the nlcx~ sign 
development in e~mlputa~iona] complexity. ] will a1(3~ ~! 
it here becau.s~ it i.s now well known and is the sub]el 
textb{x)ks. In ~x.lrdcularo the [~:xi by Garey and ]o.hri~. 
is an excellent phce  to read nix:me it. 

The class NP consists of all sets reco~ffzable in polk 
time by a nondeterministic Turing mad::he. As far ms 
the tinct time a mathematically ~luivalent cla~is was d~ 
was by James Bennett in his 1962 Ph,©. thesfs {4]. Ben: 
us{x1 the name "extended fx:~sitive rudir~len{acf relatio: 
his days, and his definition u~xJ h:~j{.ml quantifiers im~l 
comput{ng machines. [ read this [~ld off hLs thesis and 1 
his elm,s couk] be characterized as the now [amiliar de 
of NR I used ffm {errn L/+ (after C0hham's class 2/]  irl 

ent of the fbmxd devdopment  Edmm~ds, back h: 1 ?~!~5 
taiked inbrmaliy a}xm~ .pr0bbms with a "~dxxt charac:t 
Hon," a nGion esamgaily ~×tuivabat to NP. 

In I9 ,x:tuce~j the ~lotion of 5ff)<~mrple{e 
proved y and flle su[@~aph pmblem were : 
~x)mplete. A year ta~er, Karp [42) proved 2t problems vl 
N/I-complete, thus fbrcefi.l~ly demo~:£ra{iag the im~md~ 
the sub:eeL Indef~mdendy of this m~d slightly tater Lee 
b M n  5k~viet Union {now at I;k:ston Univefs 
defh:e, [arid stronger} nodon and prow~d six : 
b m s  were complete in his senax~, The i~fformat nodon 
°%earth p ~ t J e m "  was sta~@ard in the ~k)viel ]ileratum, 
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I,evin called his pmbb ms "mfiwtmal search problems/'  
The dass NP i>,:hales ~ enormous mn,d>e,r o~ practic;d 

Kobbms that {×:<:~.~r bl bush~e,~; mad Mdust~ y (see 13t ]], A 
proaf that an NP pr{)bhm~ is NP,< ~mph.4e is ;.~ pK×#' thal the 
problem is m)t in P (d<>.s ~1o{ h;.~ve a d~;{ermi~fistk: {~Jynomiat 
time alprithm) ¢ !less every NP pr~lhlem is iu P. Shtce the. 
latter amdition would revolutionize <omputer sdence, the 
practici effbc~ M' is a lower b{mmt. T}lis is 
why I have included ibis subiect im tbc se<:~hm on lower 
bomb&, 

4,5 #p-Compleiem~s 
The notion of NP.(:ompte~enes.s applies to sets, and a pr~:×ff 
that a eel is NP4:~m@eh: is usualb/interpreted as a prr×:ff that 
it is intractable. There a t<  however, a/arI4e nmuber of apI~u °- 
ently intractable f lmdbns  tbr which no Nl<completen~% 
pnxof seems to tle rebvant.  I,eslie Valiant {86, 87] defined the 
notion of 4fP~xtmpleteneas tu help remedy this situation, 
Proving that afimction is #P.<xmplete shows that it is a p ~ r -  
ently intractable t() (>mpnte in the ~une way that proving a 
set is NP<;umpbte shows that it is apparently intractable to 
recognize: rmmelL if a #P-cernplete function is {x)rnputat.Je in 
polynonfiat time, ttten P = NP. 

Valiant gave many exampbs  of #P<xrruplete tkmctions, but 
probably the most interesting one is the t:~rmanen~ of an 
integer matrix. The I:mrmanent has a definition fi~rma]ly simb. 
lar to the detemlinam, but whereas the determinant is easy to 
compute by C, aua~ian elimination, the many attempts over 
the past hundred c×td years to find a feasible way to compnte 
the t~rrnanent have all failed. Valiant ~grve the first c£mvinc- 
ing reason for this failure when he proved the [:~s~rmanent #Po 
complete. 

5, PROBABIIffSTIC ALGORrI}iMkS 
The use of random numbers to simulate or approximate ran- 
dom processes is very matural and is well established in ~)m- 
puling practice, However, the idea that random inputs might 
be ver'v useful in solving deterministic combinatorial prob- 
lems • ~as been much slower in [xmetrating the computer sci- 
sacs community. Here I will restrict attention to probabilistk: 
(coin toasinN polynomial time a lp r i thms  that "solve" (in a 
reasonable sense) a p m b b m  fbr which no deterministic Ixaly- 
nomial time algorithm is known, 

The first such algorithm seems to be the one by Berlekamp 
[5] in 1970, for factoring a polynomial ¢" over the field GNp) of 
p elements. Berlekamp's alg)rithm runs in time [~Jynomial in 
the degree of f and log p, and with p~obabili%' at least one- 
half it finis a correct prime fi!mtorization of j:, otherwise it 
ends in failure, Since the algorithm can be ret~ated any 
number of times and the latium events are all inde[~mdent 
the algorithm in practice always Nctors in a feasible amount 
of time. 

A more dramatic example is the algorithm tbr prime recc N- 
r~tion due to ~bl6vay and Strassen [77] (subnfitts<{ in 1974). 
This algorithm runs in time ~xfl~memial in the length of the 
input m', and outputs either "prime" or "com[xrsite." g m is in 
fact prime, @en the output is ce~tNnly "i.mme/'  but ff m is  
composite, then with probability at most one-half the answer 
may also be "prime?' The  algorithm may be refr~,ated any 
number of times on an inp~t m with indet~mden~ resuffs~ 
Thus if the answer is ever ' 2 ~ s i t e , "  the user knews m is 
camp,)site; if flm answer is ~sistm:~tly "prime" after, say, 1@] 
turn, then the user h.as g:×xt evMerme that m is prime, Nnce 
airy fixed comlxmite m would Nve sud~ results with tiny 
probability (]e:m than 2- '%. 

Rabin 1~l j developed a diffbr~:mt [~mbabilistic algerithm 

with pro[~:~rtles similar to the one a[:~)ve, and tbund it to he 
very fist on ~lrrlputer t r iak The m.mJmr 2~<-593 was identi~ 
fled as (probably} prime witffin a fbw minutes, 

(Me interesting appli(~dion of probabilistic prime testers 
was prof×~d by Riv~st Shamir, and Adbman  {fi7a] in their 
landmark paper on public key cryp{osystems in 1978. Their 
system requires the generation of large (100 digdt] random 
primes, They pm~×.~.;ed testing random itXJ digit n u m b e ~  uso 
ing the ~)lovay-Strassen rnetI:Hxt until one was [)und that 
was p~lbab/y prbne in the sense ou@ned above. Adua]ly 
with the new high powered deterministic prime tester of 
Cohen and 1,er>;t~z {17] mentioned in ~3ction 3, once a far> 
dorn I@] digit °'probably prime" number  was found it could 
be tested fbr certain in a}x)ut 45 seconds, if it is irn[x)rtant to 
know fbr ceSain. 

"I1le (:lass of ~ t s  with fx:Jynomial time probabilist~c recogni- 
tion algorithms in the sense of .~Jovay and Stra.~en is known 
as f:{ {or sometimes f:LP) in the literature. Thus a set is in B if 
and only if it has a proL/abilistic re<~gfition algtrithm that 
always halts in polynomial time and never makes a mistake 
fbr inputs not in t:< and fbr each input in }{ it outputs the ri&ht 
answer [)r each mm with probability at least one-half[ Hence 
the sot of composite numbers is in B, and in general P ~ }{ 
NP. There are other interesting examples of sets in B not 
known to b~ in P, F'or example, Schwmtz [71] shows that the 
set of nonsingaJar matrices w'hc~e entries are txJynomials in 
many variables is in B. The algorithm evaluates the polyno- 
mials at random small integer values and computes the dete> 
minant of the resuk (The deterrnirmnt ap~[rent.ly cannot fea- 
sibly be computed direcdy becauso the gmlynomdaks com- 
puted wo@d have exponentially many terrns in general.) 

It is an intriguing, open question whether B = P. It is 
tempting lo coniecture yes on the phfloaoplfical grounds that 
random coin tosses should not be of much use when the 
answer being sought is a well defined yes or no. A related 
question is whether a probabilistic algorithm (showing a prob- 
lem is in ]q] ix for all practical purtx~es as good as a determin- 
istic a lpf i thm.  After all, the prebabflistic aJ.gadthms can be 
mm using the p~eudora.ndom nurnber germ:rations availabb on 
most cornputers, and an error probability of 2 -v~ is negligible. 
The catch is that gseudomndom number  generators do not 
produce truly random numbers, and nobody knows how well 
they wilt work for a W e n  pmbabitistic algorithm. In fact 
ex[H~fience shows they seem to work well. But if they always 
work well, then it follows that R = P, bK~mse pseudo- 
random numhers are generated detenniifisti~ily so true ran- 
domness would not help after' all. Another tx~ssibitity is to ~ e  
a physical pro~:ess such as thermal nc@e to generate random 
numberer But it is an o~xm qu~stion in the p h i k ~ p h y  of 
science how tmty random nature can ~< 

Let me dose this sectien by ment~ning an interesting theo~ 
mm of ANe:man [1] on the class B. It is easy to ~ e  {57b] that 
if a set is in P, then for each n there is a Boolean drcui~ of 
s~ze bounded by a fix~l [~lynomial in n which determines 
whether an arbitrary string of" teng~h n is in the set. What 
Adtemaa p r o ~ d  is flaat the same is true for the class R, Thus, 
for exampb;  for each n there  N a small '%ongmter d:rcuit" 
that correctly and rapiNy ~sts whether  ri digit numLlers are 
prime, '°INe (mkfh is tha~ ~he circuits are, not uniform in n, and 
in tinct for the a:~e~ ~ff lO0 dints i~ may ~vat be ~ d b l e  m figure 
out hew to h@td the drcuit2 

g, SYNC I[.N P A R . ~ L E L  
With the advent of 'VIS[ t¢<;hr}ekygy in which one or more 

can be placed on a quar~e>inch chip, i~ is n~mmt 
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to think of ~ fi~ture <x)mputer contfx~sed of many ~ho~m<ts of 
such pPo<:{~,<)~-: ~Aork ng t(~get}mr in p~ra.]b] to s{ h't a singb 
i}ix}hlenL ~,,tthel:~.~,h XO tery  large ~le::e:r;,d ;)u.rj~}se nm{;hine {)f 
Ibis kind has been beilt yet. q:ere are such 1):x)}~ {:ts un(t< r 
way (see S<hwartz {72]), This motivates {he rec(I:t devebt> 
merit of a very pleasi~:£ branch of :ompuiadon comph:}-dt): 
tbe thcvory uf la<ge s(xde sy:wheono::s [~nallel computation, m 
which the ram}bet {:)f' pex:e~<xx-s is a resource b(umded by a 
parameter H{n) (}-1 is fbr hon:Mxt-t ) in th,:.~ same way that 
space is i×)unded t)y a parameter £~'~) in s~quel~tia! complex° 
itv th~)rv, Typically }i/n)is a fixed Ix)lynomiai iu ~, 

Quite a nmnber of :mrallet computation mede:s have been 
pc~)Ix~sed {see [21] fiora re~,iew)~ just as then~ are many con> 
bx¢ing sequential models (see S.ectio~: 2). There are two main 
contenders, however. The firsI is the ~.:la:.;s o£ shared memor~ 
models in which a large number of pr{x:es.vgrs comn:u>icate 
via a random acce:,<s mentory {hat ~bey hokl in (x:)nm:on, 
Many [mn::]lel aigerithms have been published i~:~r such 
models, since real :~ra!tet machines may well be like this 
when ~hev are built. }{owever. {be the mathematical theory 
these mo~iels are no{ very a~tisfactorv becxmse t(x> nmch of 
their detailed s~xmification is arbitrary: How are read and 
write (x):ff]i::ts in the comn:on memory r:-~solv:xl? What basic 
o-paratio::Ls are allowed i?r each proceasor? Shoukt one charge 
bg £t(n) t]n:e units to acc;e~ non:mon memory? 

Hence : prefer the :leaner n:ode! dis::us.sed by Bnmdin [81 
(I:}77), in which a parallel :):np:,:ter is a unifon:: fan:fly <B ,~  
of acydic Boolean cir{:uits, such that B~, has rl inputs (and 
hence takes m~e of those input strings of length n), Then H(n) 
(the arnoun~ of hardware) is simply the number' of g~£es in B,,, 
and T(n) {the paralbl mmputat ion time) L~ the depth of the 
circuit B. {i.e, bn~h of the longecst [x£h from an input te an 
output). This mo~hJ has the practic~fl }ust:ifi(mtion that pn> 
sun:ably all real machin(<s (including sha:'ed memory ma- 
chines) are built from FkxJean ci>cuits. Fnrthennore, the min- 
imum ~:kxJean size and depth needed to compute a function 
is a natural mathemadml problem and wa.s considered well 
hetbre the theor7 of paralbl computation was a:?und, 

Fortunately fbr the theory, the minimum values of has% 
ward H/n) and parallel dine T(n) are not wildly different for 
the various cx)mpeting ~ r a ] l e l  cTamputer n:~leLs~ :n partk:ular. 
there is an intePesting geaend [:ct tree for all the n:(x]e[a first 
proved for a pac~k:ular model by Pratt and Stockmeyer [58] in 
i974 and called the "Darallel computation thesis" in [33]; 
nan:ely, a problem can be solvex] in time potynom.ia] in "fYn) 
by a parallel machine {with unlimited hardware) if and only 
if it c~r: be so lved in space polynomAal in 7~n) by a seque::tial 
machine [with unlimited time) 

A bksic question in parallel computation is: Which pro[> 
bins mn he a:)tw~d substantially £~'ter usLng n:any pm~¢~)n~ 
rather than one prc4>;~sN~r? Nichol&s Pippenger [57a] formal- 
h:ed ~his question by defining the class (nnw cath<t NC, fbr 
"Nick's c t~s ' ]  of ~oblems  solvable ultra fast [time 7~n) = 
{log n) (~:}] on a F~.ralel m m p u t e r  w'i{h a feasible [H{n) = n m~] 
amount of ha:'dwm~?..Fo:lunaMy, the c:t:~s NZ;' remains the 
same, indevendent of :'he particular [~mdle] o?mputer m(x]el 
c}:c~m~, and it is easy ~o see that NC is a subset of the d : t~  FP 
of §anctions c~s:Bf£:taNe a~uentiat ty in polynomial time. Our 
informal quesl.km (2an then f~ forma]L~sd as folk)ws: Which 
prebbms in FP are abo in NC? 

tt is cxmceivahte (thou~ unlikely) that ;'4:(£'= YP, sin(x~ te 
prove NC # FP wouh:i requi~ a breaktlhrou~ in (x:)mpiexity 
th~xx7 {see the end :d Sxa~::{ion 4,1), Nnce we do not kn(m' 
how to prove a flmctkm f h: FP is not in NC, the next [x~st 
thing is to prove that f is k~g s:~ce mmpiete for FP. Thb  i.:; the 
anah54 Of prOVi~:g a f.}r~k~bm is NP<;omi:Jete, and ha5 {ihe 

pracd(:al eflb::t of discomay~inp, ciiDrt ~ ii)~- th~dh~: ~uper fast 
[~a>dh>t algorithms {br i Thie.~ i> be:>u>;<e if ! is in~i spme- 
:::)rnt}lele b r  b'P and t is i]~ ;<tL d>>: }"1' .... \X2 w}AQ: ,.vou]d 
l~u ~: big sm't~Hse. 

Quite 8 bit fff ;>."ot,jee~>; ha:.. been nmdc J> ~:{ ~>;>ji) iu £ ix.o} 
l{ms in FP :s to v~h{ t h <  they ure h: N(; ~n b/, q)ac:~-(;on> 
t)bte fbr FP {of <ounqe, dmv may b{ mAt}it r). The flint exam- 
~)le ( ) { a  t)n)},}l{Hn (7olnt)t8{{? Ii}T ~) T%'[tS [)I1 S~!~11c(] i n  I!}73 t)y ~]]e 
in {20]. d{ho~:~: ] did nol sla*e the re>;:A{ :v. ;~ cnm/)leteness 
result. Shnrt]v after/}rid lone8 ,rod l ,a ~t~er {381 det]ne(t this 
nodon ef comlJeteness and gave abeut five example.s, inc]ud. 
:ng the emptJnea.~ t)~nbh,m tLr (outext..flee grammars. Proba- 
bly the simpb, st :}tobit m pn),,ed comfAete for FP i.~ die a}o 
called circuit value p:'obh~m [47}: #yen a l}(:~.Je;a:: {:ir(,uit to- 
£etller with "~a]u{:s f}.)r its iapt,As, fiHd {}}e vahm, of Ibe output, 
The examph:~ most [nten~sti:~£ to me, due to (;< lds hlager, 
Sham m:d Staph> [34], is finding flw {p.nitv of) the maxhmnn 
flow thlx)ugh a given ::etwork with {b.rgc) [×>itive integer 
<2::rarities (:m its edges. The interest <x)mes frnn: ~be subtlety 
of the comph tene~.s pr~:x:}[ }qnatly, 1 :-;}:ouht mention that lin- 
ear progrannning is c{}n~l){ete for FP, In this (;a~m tbe difficult 
part is showing that the pnJJem is in P {see {43]), after which 
the (x)mpte~enes.s pr{×)f {26] is strai~j:di):-want. 

Among the pmbh<lns known to be in NC are the ti,)ur 
arithmetic: operations (+, --, ' ,  e )  on binary m.mff)ers, sorting, 
gEaph :xmne{ fivity, ma{rix o:>.~ratiens (nmltitJicaiion, inverse, 
detemina~:t rank), fx:)lynomial greatest cnnm:on divisors, (:on. 
texbfree languages, and finding a minimum spanning forest in 
a g1"aph (see {11], [21 ], [63]. [67b]). The s/zx: of a maximum 
matching fbr a given graph is known {11] to be in "random" 
NC {NC in which (:sAn t{>kses are allowed), allhough it is an 
interesting (:)b~m questinn of wbethe:  finding an adual maxi- 

iN'" mum matching is eve:~ in ran(tern ~ (.. Results in [89] and 
{67b} provide general meth(~[s £~:~" showing prohlen:s are in 
NC 

The most interesting problem in FP not known eitber to be 
tx)rnplete fbr FP or iu {randeln) NC fs finding ~he ~g'eatest 
m m n m n  divia)r of two integers. There are many other inter- 
estin.g problems that have yet to be daxsifi{~i including find- 
ing a maximum matching or a maxima/cl ique i~: a graph 
(see :88]) 

7. THE F U T U R E  
Let me say again that the field of computational (xm:plexity is 
la<ge and J:is overview is briefi The:re are large [~:rts of the 
subje'd that : have left out alteygether or barely touched on., 
My a[×}logies to {he. researchers in th~ : '  fmrts. 

One relatively new and exciting Dart cale,(~ "c.omputatiol.ai 
infbrmation thc<)ry/' by Yao [921, bt:ilds on Sha:mon's c]assi- 
c~al informatkm theory by comsidering inR)rmation that oan be 
atx::esz~d through a feasible mmputa~iom This subject was 
sparked largely by the patxms by Diffie and t-tetlma:~ [25] and 
Rivest Shamir, and Adleman [67a] on public key crypk~sys- 
terns, although its computational roots go back t:~ Kotmogomff 
[45] and Chaitin {14@ [t4b], who firs~ gave :nean.in 8 tO the 
notkm e ra  sin?je firdte ~xF~ence beieg "random/ '  by u~ing 
the theory ot ° mmputation, An interesting idea in this theod, 
considered by Shamir {73] and Blum and MkxJi {7], concerns 
generating F~mdorandom s~:~4uences in which :f\lture bits are 
pmvabb¢ ha:It to p:redic~ i~ terms of ims~ bHs, Yao [92] proves 

bitistk: cta~ 8 (;{~e S~£tien 5]~ in h~ct, comp~ta{ional i::lbmm- 
Hen flm~)ry promises k'~ shed lif~J~:~ on the role of randomness 
in computatk:m, 

tn additkm to <xm@uta~io~al hffbrmation :beery we (xm 
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exi~ct interesting new results on probahilistic a]gorithrns, par- 
al[el computation, and (with any luck) lower hounds. Con- 
ceruing lower bounds, the one breakthrough for which I see 
~)me ho~im in the near future is showing that not every prob- 
Iem in P is solvable in space O(log n), and perhaps alto P # 
5.'(2. hi a~y case, the field of computational complexity re- 
~nains very vigorous, and I took forward to seeing what  the 
futurt.,~ will hrirlg. 

Ack~owl~Mgmen~, I am grateful to my complexity col- 
leagpdeS at Toronto for many helpful comments and sugges- 
tions, especially Allan Borodin, Joachim yon zur Gathen, Sil- 
do MicalL and Charles Rackoff, 
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