
NIKLAUS WIRTH
1984 ACM A.M. TURING AWARD RECIPIENT

Niklaus Wirth of the Swiss Federal
Institute of Technology (ETH) was
presented the 1984 ACM A.M.
Turing Award at the Association's
Annual Conference in San Francisco
in October in recognition of his
outstanding work in developing a
sequence of innovative computer
languages: Euler, ALGOL-W,
Modula, and Pascal. Pascal, in
particular, has become significant
pedagogically and has established a
foundation for future research in the
areas of computer language, systems,
and architecture. The hallmarks of a
Wirth language are its simplicity,
economy of design, and high-quality
engineering, which result in a
language whose notation appears to
be a natural extension of algorithmic
thinking rather than an extraneous
formalism.

Wirth's ability in language design
is complemented by a masterful
writing ability. In the April 1971
issue of Communications of the ACM,
Wirth published a seminal paper on
Structured Programming ("Pro-
gram Development by Stepwise
Refinement") that recommended
top-down structuring of programs
(i.e., successively refining program
stubs until the program is fully
elaborated). The resulting elegant

Niklaus Wirth

and powerful method of exposition
remains interesting reading today
even after the furor over Structured
Programming has subsided. Two
later papers, "Toward a Discipline of
Real-Time Programming" and "What
Can We Do About the Unnecessary
Diversity of Notation" (published in
CACM in August and November
1974, respectively), speak to Wirth's
consistent and dedicated search for
an adequate language formalism.

The Turing Award, the Asso-
ciation's highest recognition of
technical contributions to the
computing community, honors
Alan M. Turing, the English
mathematician who defined the
computer prototype Turing machine

and helped break German ciphers
during World War II.

Wirth received his Ph.D. from the
University of California ht Berkeley
in 1963 and was Assistant Professor
at Stanford University until 1967.
He is Professor at the ETH Zurich
since 1968; from 1982 unti] 1984 he
was Chairman of the Division of
Computer Science (Informatik) at
ETH. Wirth's recent work includes
the design and development of the
personal computer Lilith in
conjunction with the Modula-2
language. In his lecture, Wirth
presents a short history of his major
projects, drawing conclusions and
highlighting the principles that have
guided his work.

February 1985 Volume 28 Number 2 Communications of the ACM 159

TURING AWARD LECTURE

FROM PROGRAMMING LANGUAGE DESIGN
TO COMPUTER CONSTRUCTION

From NELIAC (via ALGOL 60) to Euler and ALGOL W, to Pascal and
Modula-2, and ultimately Lilith, Wirth's search for an appropriate formal-
ism for systems programming yields intriguing insights and surprising re-
suits.

NIKLAUS WIRTH

It is a great pleasure to receive the Turing Award, and
both gratifying and encouraging to receive appreciat ion
for work done over so many years. I wish to thank
ACM for bestowing upon me this prestigious award. It
is part icularly fitting that I receive it in San Francisco,
where my professional career began.

Soon after I received notice of the award, my feeling
of joy was tempered somewhat by the awareness of
having to deliver the Turing lecture. For someone who
is an engineer rather than an orator or preacher, this
obligation causes some noticeable anxiety. Foremost
among the questions it poses is the following: What do
people expect from such a lecture? Some will wish to
gain technical insight about one's work, or expect an
assessment of its relevance or impact. Others will wish
to hear how the ideas behind it emerged. Still others
expect a statement from the expert about future trends,
events, and products. And some hope for a frank assess-
ment of the present engulfing us, ei ther glorifying the
monumental advance of our technology or lamenting
its cancerous side effects and exaggerations.

In a period of indecision, I consulted some previous
Turing lectures and saw that a condensed report about
the history of one's work would be quite acceptable. In
order to be not just entertaining, I shall try to summa-
rize what I believe I have learned from the past. This
choice, frankly, suits me quite well, because nei ther do
I pretend to know more about the future than most
others, nor do I like to be proven wrong afterwards.
Also, the art of preaching about current achievements

© 1985 ACM 0001-0782/85/0200-0160 75¢

and misdeeds is not my pr imary strength. This does not
imply that I observe the present computing scene with-
out concern, part icularly its tumul tuous hassle with
commercialism.

Certainly, when I entered the computing field in
1960, it was nei ther so much in the commercial l ime-
light nor in academic curricula. During my studies at
the Swiss Federal Institute of Technology (ETH), the
only mention I heard of computers was in an elective
course given by Ambros P. Speiser, who later became
the president of IFIP. The computer ERMETH devel-
oped by him was hardly accessible to ordinary stu-
dents, and so my init iation to the computing field was
delayed until I took a course in numerical analysis at
Laval University in Canada. But alas, the Alvac III E
machinery was out of order most of the time, and exer-
cises in programming remained on paper in the form of
untested sequences of hexadecimal codes.

My next at tempt was somewhat more successful: At
Berkeley, I was confronted with Harry Huskey's pet
machine, the Bendix G-15 computer. Although the
Bendix G-15 provided some feeling of success by pro-
ducing results, the gist of the programming art appeared
to be the clever allocation of instructions on the drum.
If you ignored the art, your programs could well run
slower by a factor of one hundred. But the educational
benefit was clear: You could not afford to ignore the
least little detail. There was no way to cover up defi-
ciencies in your design by simply buying more mem-
ory. In retrospect, the most at tractive feature was that
every detail of the machine was visible and could be

160 Communications of the ACM February 1985 Volume 28 Number 2

Turing Award Lecture

understood. Nothing was hidden in complex circuitry,
silicon, or a magic operating system.

On the other hand, it was obvious that computers of
the future had to be more effectively programmable. I
therefore gave up the idea of studying how to design
hardware in favor of studying how to use it more ele-
gantly. It was my luck to join a research group that was
engaged in the development--or perhaps rather im-
p r o v e m e n t - o f a compiler and its use on an IBM 704.
The language was called NELIAC, a dialect of ALGOL
58. The benefits of such a "language" were quickly ob-
vious, and the task of automatically translating pro-
grams into machine code posed challenging problems.
This is precisely what one is looking for when engaged
in the pursuit of a Doctorate. The compiler, itself writ-
ten in NELIAC, was a most intricate mess. The subject
seemed to consist of I percent science and 99 percent
sorcery, and this tilt had to be changed. Evidently, pro-
grams should be designed according to the same princi-
ples as electronic circuits, that is, clearly subdivided
into parts with only a few wires going across the
boundaries. Only by understanding one part at a time
would there be hope of finally understanding the
whole.

This attempt received a vigorous starting impulse
from the appearance of the report on ALGOL 60.
ALGOL 60 was the first language defined with clarity;
its syntax was even specified in a rigorous formalism.
The lesson was that a clear specification is a necessary
but not sufficient condition for a reliable and effective
implementation. Contact with Aadrian van Wijngaar-
den, one of ALGOL's codesigners, brought out the cen-
tral theme more distinctly: Could ALGOL's principles
be condensed and crystallized even further?

Thus began my adventures in programming lan-
guages. The first experiment led to a dissertation and
the language Euler--a trip with the bush knife through
the jungle of language features and facilities. The result
was academic elegance, but not much of practical util-
i t y - a lmos t an antithesis of the later data-typed and
structured programming languages. But it did create a
basis for the systematic design of compilers that, so was
the hope, could be extended without loss of clarity to
accommodate further facilities.

Euler caught the attention of the IFIP Working Group
that was engaged in planning the future of ALGOL. The
language ALGOL 60, designed by and for numerical
mathematicians, had a systematic structure and a con-
cise definition that were appreciated by mathematically
trained people but lacked compilers and support by in-
dustry. To gain acceptance, its range of application had
to be widened. The Working Group assumed the task of
proposing a successor and soon split into two camps.
On one side were the ambitious who wanted to erect
another milestone in language design, and, on the
other, those who felt that time was pressing and that an
adequately extended ALGOL 60 would be a productive
endeavor. I belonged to this second party and submitted
a proposal that lost the election. Thereafter, the pro-

posal was improved with contributions from Tony
Hoare (a member of the same group) and implemented
on Stanford University's first IBM 360. The language
later became known as ALGOL W and was used in sev-
eral universities for teaching purposes.

A small interlude in this sizable implementation ef-
fort is worth mentioning. The new IBM 360 offered
only assembler code and, of course, FORTRAN. Neither
particularly were loved, either by me or my graduate
students, as a tool for designing a compiler. Hence, I
mustered the courage to define yet another language in
which the ALGOL compiler would be described: A
compromise between ALGOL and the facilities offered
by the assembler, it would be a machine language with
ALGOL-like statement structures and declarations. No-
tably, the language was defined in a couple of weeks; I
wrote the cross compiler on the Burroughs B-5000 com-
puter within four months, and a diligent student trans-
ported it to the IBM 360 within an equal period of time.
This preparative interlude helped speed up the ALGOL
effort considerably. Although envisaged as serving our
own immediate needs and to be discarded thereafter, it
quickly acquired its own momentum. PL360 became an
effective tool in many places and inspired similar de-
velopments for other machines.

Ironically, the success of PL360 was also an indica-
tion of ALGOL W's failure. ALGOL's range of applica-
tion had been widened, but as a tool for systems pro-
gramming, it still had evident deficiencies. The diffi-
culty of resolving many demands with a single lan-
guage had emerged, and the goal itself became ques-
tionable. PL/1, released around this time, provided fur-
ther evidence to support this contention. The Swiss
army knife idea has its merits, but if driven to excess,
the knife becomes a millstone. Also, the size of the
ALGOL-W compiler grew beyond the limits within
which one could rest comfortably with the feeling of
having a grasp, a mental understanding, of the whole
program. The desire for a more concise yet more appro-
priate formalism for systems programming .had not been
fulfilled. Systems programming requires an efficient
compiler generating efficient code that operates with-
out a fixed, hidden, and large so-called run-time pack-
age. This goal had been missed by both ALGOL-W and
PL/1, both because the languages were complex and
the target computers inadequate.

In the fall of 1967, I returned to Switzerland. A year
later, I was able to establish a team with three assist-
ants to implement the language that later became
known as Pascal. Freed from the constraints of obtain-
ing a committee consensus, I was able to concentrate on
including the features I myself deemed essential and
excluding those whose implementation effort I judged
to be incommensurate with the ultimate benefit. The
constraint of severely limited manpower is sometimes
an advantage.

Occasionally, it has been claimed that Pascal was
designed as a language for teaching. Although this is
correct, its use in teaching was not the only goal. In

February 1985 Volume 28 Number 2 Communications of the ACM 161

Turing Award Lecture

fact, I do not believe in using tools and formalisms in
teaching that are inadequate for any practical task. By
today's standards, Pascal has obvious deficiencies for
programming large systems, but 15 years ago it repre-
sented a sensible compromise between what was desir-
able and what was effective. At ETH, we introduced
Pascal in programming classes in 1972, in fact against
considerable opposition. It turned out to be a success
because it allowed the teacher to concentrate more
heavily on structures and concepts than features and
peculiarities, that is, on principles rather than tech-
niques.

Our first Pascal compiler was implemented for the
CDC 6000 computer family. It was written in Pascal
itself. No PL6000 was necessary, and I considered this a
substantial step forward. Nonetheless, the code gener-
ated was definitely inferior to that generated by
FORTRAN compilers for corresponding programs.
Speed is an essential and easily measurable criterion,
and we believed the validity of the high-level language
concept would be accepted in industry only if the per-
formance penalty were to vanish or at least diminish.
with this in mind, a second effort--essentially a one-
man effort--was launched to produce a high-quality
compiler. The goal was achieved in 1974 by Urs Am-
mann, and the compiler was thereafter widely distrib-
uted and is being used today in many universities and
industries. Yet the price was high; the effort to generate
good (i.e., not even optimal) code is proportional to the
mismatch between language and machine, and the
CDC 6000 had certainly not been designed with high-
level languages in mind.

Ironically again, the principal benefit turned up
where we had least expected it. After the existence of
Pascal became known, several people asked us for as-
sistance in implementing Pascal on various other ma-
chines, emphasizing that they intended to use it for
teaching and that speed was not of overwhelming im-
portance. Thereupon, we decided to provide a compiler
version that would generate code for a machine of our
own design. This code later became known as P-code.
The P-code version was easy to construct because the
new compiler was developed as a substantial exercise
in structured programming by stepwise refinement and
therefore the first few refinement steps could be
adopted unchanged. Pascal-P proved enormously suc-
cessful in spreading the language among many users.
Had we possessed the wisdom to foresee the dimen-
sions of this movement, we would have put more effort
and care into designing and documenting P-code. As it
was, it remained a side effort to honor the requests in
one concentrated stride. This shows that even with the
best intentions one may choose one's goals wrongly.

But Pascal gained truly widespread recognition only
after Ken Bowles in San Diego recognized that the P-
system could well be implemented on the novel micro-
computers. His efforts to develop a suitable environ-
ment with integrated compiler, filer, editor, and debug-
ger caused a breakthrough: Pascal became available to

thousands of new computer users who were not bur-
dened with acquired habits or stifled by the urge to
stay compatible with software of the past.

In the meantime, I terminated work on Pascal and
decided to investigate the enticing new subject of mul-
tiprogramming, where Hoare had laid respectable foun-
dations and Brinch Hansen had led the way with his
Concurrent Pascal. The attempt to distill concrete rules
for a multiprogramming discipline quickly led me to
formulate them in terms of a small set of programming
facilities. In order to put the rules to a genuine test, I
embedded them in a fragmentary language, whose
name was coined after my principal aim: modularity in
program systems. The module later turned out to be the
principal asset of this language; it gave the abstract con-
cept of information hiding a concrete form and incorpo-
rated a method as significant in uniprogramming as in
multiprogramming. Also, Modula contained facilities to
express concurrent processes and their synchroniza-
tion.

By 1976, I had become somewhat weary of program-
ming languages and the frustrating task of constructing
good compilers for existing computers that were de-
signed for old-fashioned "by-hand" coding. Fortunately,
I was given the opportunity to spend a sabbatical year
at the research laboratory of Xerox Corporation in Palo
Alto, where the concept of the powerful personal work-
station had not only originated but was also put into
practice. Instead of sharing a large, monolithic com-
puter with many others and fighting for a share via a
wire with a 3KHz bandwidth, I now used my own com-
puter placed under my desk over a 15MHz channel.
The influence of a 5000-fold increase in anything is not
foreseeable; it is overwhelming. The most elating sensa-
tion was that after 16 years of working for computers,
the computer now seemed to work for me. For the first
time, I did my daily correspondence and report writing
with the aid of a computer, instead of planning new
languages, compilers, and programs for others to use.
The other revelation was that a compiler for the lan-
guage Mesa, whose complexity was far beyond that of
Pascal, could be implemented on such a workstation.
These new working conditions were so many orders of
magnitude above what I had experienced at home that
I decided to try to establish such an environment there
as well.

I finally decided to dig into hardware design. This
decision was reinforced by my old disgust with existing
computer architectures that made life miserable for a
compiler designer with a bent toward systematic sim-
plicity. The idea of designing and building an entire
computer system consisting of hardware, microcode,
compiler, operating system, and program utilities
quickly took shape in my imagination--a design that
would be free from any constraint to be compatible
with a PDP-11 or an IBM 360, or FORTRAN, Pascal,
UNIX, or whatever other current fad or committee
standard there might be.

But a sensation of liberation is not enough to succeed

162 Communications of the ACM February 1985 Volume 28 Number 2

Turing Award Lecture

in a technical project. Hard work, determination, a sen-
sitive feeling of what is essential and what ephemeral,
and a portion of luck are indispensable. The first lucky
accident was a telephone call from a hardware designer
enquiring about the possibility of coming to our univer-
sity to learn about software techniques and acquire a
Ph.D. Why not teach him about software and let him
teach us about hardware? It didn't take long before the
two of us became a functioning team, and Richard
Ohran soon became so excited about the new design
that he almost totally forgot both software and Ph.D.
That didn't disturb me too much, for I was amply occu-
pied with the design of hardware parts; with specifying
the micro- and macrocodes, and by programming the
latter's interpreter; with planning the overall software
system; and in particular with programming a text edi-
tor and a diagram editor, both making use of the new
high-resolution bit-mapped display and the small mira-
cle called Mouse as a pointing device. This exercise in
programming highly interactive utility programs required
the study and application of techniques quite foreign
to conventional compiler and operating system design.

The total project was so diversified and complex that
it seemed irresponsible to start it, particularly in view
of the small number of part-time assistants available to
us, who averaged around seven. The major threat was
that it would take too long to keep the enthusiastic two
of us persisting and to let the others, who had not yet
experienced the power of the workstation idea, become
equally enthusiastic. To keep the project within reason-
able dimensions, I stuck to three dogmas: Aim for a
single-processor computer to be operated by a single user
and programmed in a single language. Notably, these
cornerstones were diametrically opposed to the trends
of the time, which favored research in multiprocessor
configurations, time-sharing multiuser operating sys-
tems, and as many languages as you could muster.

Under the constraints of a single language, I faced a
difficult choice whose effects would be wide ranging,
namely, that of selecting a language. Of existing lan-
guages, none seemed attractive. Neither could they sat-
isfy all the requirements, nor were they particularly
appealing to the compiler designer who knows the task
has to be accomplished in a reasonable time span. In
particular, the language had to accommodate all our
wishes with regard to structuring facilities, based on 10
years' experience with Pascal, and it had to cater to
problems so far only handled by coding with an assem-
bler. To cut a long story short, the choice was to design
an offspring of both proven Pascal and experimental
Modula, that is, Modula-2. The module is the key to
bringing under one hat the contradictory requirements
of high-level abstraction for security through redun-
dancy checking and low-level facilities that allow ac-
cess to individual features of a particular computer. It
lets the programmer encapsulate the use of low-level
facilities in a few small parts of the system, thus pro-
tecting him from falling into their traps in unexpected
places.

The Lilith project proved that it is not only possible
but advantageous to design a single-language system.
Everything from device drivers to text and graphics
editors is written in the same language. There is no
distinction between modules belonging to the operating
system and those belonging to the user's program. In
fact, that distinction almost vanishes and with it the
burden of a monolithic, bulky resident block of code,
which no one wants but everyone has to accept. More-
over, the Lilith project proved the benefits of a well-
matched hardware/software design. These benefits can
be measured in terms of speed: Comparisons of execu-
tion times of Modula programs revealed that Lilith is
often superior to a VAX 750 whose complexity and cost
are a multiple of those of Lilith. They can also be meas-
ured in terms of space: The code of Modula programs
for Lilith is shorter than the code for PDP-11, VAX, or
68000 by factors of 2 to 3, and shorter than that of the
NS 32000 by a factor of 1.5 to 2. In addition, the code
generating parts of compilers for these microprocessors
are considerably more intricate than they are in Lilith
due to their ill-matched instruction sets. This length
factor has to be multiplied by the inferior density fac-
tor, which casts a dark shadow over the much adver-
tised high-level language suitability of modern micro-
processors and reveals these claims to be exaggerated.
The prospect that these designs will be reproduced mil-
lions of times is rather depressing, for by their mere
number they become our standard building blocks. Un-
fortunately, advances in semiconductor technology
have been so rapid that architectural advances are
overshadowed and have become seemingly less rele-
vant. Competition forces manufacturers to freeze new
designs into silicon long before they have proved their
effectiveness. And whereas bulky software can at least
be modified and at best be replaced, nowadays com-
plexity has descended into the very chips. And there is
little hope that we have a better mastery of complexity
when we apply it to hardware rather than software.

On both sides of this fence, complexity has and will
maintain a strong fascination for many people. It is true
that we live in a complex world and strive to solve
inherently complex problems, which often do require
complex mechanisms. However, this should not dimin-
ish our desire for elegant solutions, which convince by
their clarity and effectiveness. Simple, elegant solutions
are more effective, but they are harder to find than
complex ones, and they require more time, which we
too often believe to be unaffordable.

Before closing, let me try to distill some of the com-
mon characteristics of the projects that were men-
tioned. A very important technique that is seldom used
as effectively as in computing is the bootstrap. We used
it in virtually every project. When developing a tool, be
it a programming language, a compiler, or a computer, I
designed it in such a way that it was beneficial in the
very next step: PL360 was developed to implement
ALGOL W; Pascal to implement Pascal; Modula-2 to
implement the whole workstation software; and Lilith

February 1985 Volume 28 Number 2 Communications of the ACM 163

Turing Award Lecture

to provide a suitable environment for all our future
work, ranging from programming to circuit documenta-
tion and development, from report preparation to font
design. Bootstrapping is the most effective way of
profiting from one's own efforts as well as suffering
from one's mistakes.

This makes it mandatory to distinguish early between
what is essential and what ephemeral. I have always tried
to identify and focus in on what is essential and yields
unquestionable benefits. For example, the inclusion of
a coherent and consistent scheme of data type declara-
tions in a programming language I consider essential,
whereas the details of varieties of for-statements, or
whether the compiler distinguishes between upper-
and lowercase letters, are ephemeral questions. In com-
puter design, I consider the choice of addressing m o d e s
and the provision of complete and consistent sets of
(signed and unsigned) ar i thmetic instructions including
proper traps on overflow to be crucial; in contrast, the
details of a mult ichannel priorit ized interrupt mecha-
nism are rather peripheral. Even more important is en-
suring that the ephemeral never impinge on the sys-
tematic, s tructured design of the central facilities.
Rather, the ephemeral must be added fittingly to the
existing, well-s tructured framework.

Rejecting pressures to include all kinds of facilities
that "might also be nice to have" is sometimes hard.
The danger that one's desire to please will interfere
with the goal of consistent design is very real. I have
always tried to weigh the gains against the cost. For
example, when considering the inclusion of either a
language feature or the compiler 's special t reatment of
a reasonably frequent construct, one must weigh the
benefits against the added cost of its implementat ion
and its mere presence, which results in a larger system.
Language designers often fail in this respect. I gladly
admit that certain features of Ada that have no counter-
parts in Module-2 may be nice to have occasionally, but
at the same time, I question whether they are worth
the price. The price is considerable: First, although the
design of both languages started in 1977, Ada compilers
have only now begun to emerge, whereas we have been
using Module since 1979. Second, Ada compilers are
rumored to be gigantic programs consisting of several
hundred thousand lines of code, whereas our newest
Module compiler measures some five thousand lines
only. I confess secretly that this Module compiler is
already at the limits of comprehensible complexity, and
I would feel utterly incapable of constructing a good
compiler for Ada. But even if the effort of building
unnecessari ly large systems and the cost of memory to
contain their code could be ignored, the real cost is
hidden in the unseen efforts of the innumerable pro-
grammers trying desperately to understand them and
use them effectively.

Another common characteristic of the projects
sketched was the choice of tools. It is my belief that a
tool should be commensurate with the product; it must
be as simple as possible, but no simpler. A tool is in fact

counterproductive when a large part of the entire proj-
ect is taken up by mastering the tool. Within the Euler,
ALGOL W, and PL360 projects, much consideration
was given to the development of table-driven, bottom-
up syntax analysis techniques. Later, I switched back to
the simple recursive-descent, top-down method, which
is easily comprehensible and unquest ionably suffi-
ciently powerful, if the syntax of the language is wisely
chosen. In the development of the Lilith hardware, we
restricted ourselves to a good oscilloscope; only rarely
was a logic state analyzer needed. This was possible
due to a relatively systematic, trick-free concept for the
processor.

Every single project was pr imari ly a learning experi-
ment. One learns best when inventing. Only by actually
doing a development project can I gain enough familiar-
ity with the intrinsic difficulties and enough confidence
that the inherent details can be mastered. I never could
separate the design of a language from its implementa-
tion, for a rigid definition without the feedback from
the construction of its compiler would seem to me pres-
umptuous and unprofessional. Thus, I part icipated in
the construction of compilers, circuity, and text and
graphics editors, and this entailed microprogramming,
much high-level programming, circuit design, board
layout, and even wire wrapping. This may seem odd,
but I simply like hands-on experience much better than
team management. I have also learned that researchers
accept leadership from a factual, in-touch team mem-
ber much more readily than from an organization ex-
pert, be he a manager in industry or a universi ty pro-
fessor. I try to keep in mind that teaching by setting a
good example is often the most effective method and
sometimes the only one available.

Lastly, each of these projects was carried through by
the enthusiasm and the desire to succeed in the knowl-
edge that the endeavor was worthwhile. This is perhaps
the most essential but also the most elusive and subtle
prerequisite.] was lucky to have team members who
let themselves be infected with enthusiasm, and here is
my chance to thank all of them for their valuable con-
tributions. My sincere thanks go to all who partici-
pated, be it in the direct form of working in a team, or
in the indirect forms of testing our results and provid-
ing feedback, of contributing ideas through criticism or
encouragement, or of forming user societies. Without
them, nei ther ALOGL W, nor Pascal, nor Module-2, nor
Lilith would have become what they are. This Turing
Award also honors their contributions.

Author's Present Address: Niklaus Wirth, Xerox Research Center, 3333
Coyote Hill Road. Palo Alto. CA 94304.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

164 Communications of the ACM February 1985 Volume 28 Number 2

